
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 15

Big Data and Web: An Efficient Algorithm Design

for DISC
Mahesh S Nayak

1
, Dr. M. Hanumanthappa

2
, Dr. B R Prakash

3
, Dattasmita HV

4

1
Research and Development Centre Bharathiar University, Coimbatore – 641 046, India

2
Professor, Department of Computer Science & Applications, Bangalore University, Bangalore, India

3
Assistant Professor, Department of MCA, Sri Siddhartha Institute of Technology, Tumkur, India

4
Assistant Professor, Govt. First Grade College, Tumkur, India

Abstract: - Data-intensive computing is a paradigm to address the

data gap and a platform to allow the advancement in research to

process massive amounts of data and implement such

applications which previously analyzed to be impractical or

infeasible.The existing one-pass analytics algorithm observed to

be data-intensive and contrarily requires the ability to efficiently

process high volumes of data. MapReduce is supposed to be a

programming model for processing large datasets using a cluster

of machines. However, the existing MapReduce model is

considerably not well-suited for high volume trimmer data, since

it is towards batch processing and requires the data set to be

fully loaded into the cluster before running analytical queries.

This paper examines, from anefficiency standpoint, what the

architectural design changes are necessary to bring the benefits

of the MapReduce model and streaming algorithm to

incremental, the existing MR algorithms.

I. INTRODUCTION

Data-intensive Scalable computing is a class of parallel

computing applications that use- data parallel approach to

process terabytes or petabytes of data and hence represented

as big data. The computing applications are deemed according

to compute-intensive and data-intensive based on the type of

computational requirements and data volumes‖.
[1]

―The advent of the Internet and World Wide Web has

given the reason for storing of large amount of information

and presenting them online.The business and government

organizations create large amounts of both structured

and unstructured information which needs to be processed,

analyzed, and linked. An IDC white paper sponsored by EMC

Corporation estimated the amount of information currently

stored in a digital form in 2007 at 281 Exabyte’s and the

overall compound growth rate at 57% with information in

organizations growing at even a faster rate‖.
[3]

 ―The storing,

managing, accessing, and processing of this vast amount of

data represents a fundamental need and an immense challenge

in order to satisfy needs to Search-Analyze-Mine-

Visualize[SAMV] this data as information‖.
[5]

―The real-time analytics on large andconcurrent

datasets has become an essential challenge to meet the

enterprise needs. Like traditional warehouse applications,

real-time analytics, using incremental one-pass processing

tends to be data-intensive in nature and requires the ability to

collect and analyze enormous datasets efficiently. At the same

time, MapReduce has emerged as a popular model for parallel

processing of large datasets using a commodity cluster of

machines. The key benefits of the model are that, it harnesses

compute and I/O parallelism on commodity hardware and can

easily scale as the datasets grow in size. However, the

MapReduce model is not well-suited for incremental one-pass

analytics since it is primarily designed for batch processing of

queries on large datasets‖.
[6]

―Recently, three Google researchers summarized the data-

driven philosophy in an essay titled The Unreasonable

Effectiveness of Data.
[7]

Why is this so? It boils down to the

fact that language in the wild, just like human behavior in

general, is messy. Unlike, say, the interaction of subatomic

particles, human use of language is not constrained by

succinct, universal ―laws of grammar‖. There are of course

rules that govern the formation of words and sentences—for

example, that verbs appear before objects in English, and that

subjects and verbs must agree in number in many languages—

but real-world language is affected by a multitude of other

factors as well: people invent new words and phrases all the

time, authors occasionally make mistakes, groups of

individuals write within a shared context, etc. The Argentine

writer Jorge Luis Borges wrote a famous allegorical one-

paragraph story about a fictional society in which the art of

cartography had gotten so advanced that their maps were as

big as the lands they were describing. The world, he would

say, is the best description of itself. In the same way, the more

observations we gather about language use, the more accurate

a description we have of language itself. This, in turn,

translates into more effective algorithms and systems‖.
[8]

―Data represent the rising tide that lifts all boats—more data

lead to better algorithms and systems for solving real-world

problems. Let’s start with the obvious observation: data

intensive processing is beyond the capability of any individual

machine and requires clusters—which mean that large-data

problems are fundamentally about organizing computations

on dozens, hundreds, or even thousands of machines. This is

―

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 16

exactly what MapReduce does, and the rest of this paperis a

platform to present the same‖.
[8]

II. ANALYSIS- BEHIND MAPREDUCE

There are discussions and analyses carried out for the Search-

Analyze-Mine-Visualize [SAMV] of large-data problems. The

abstract algorithm requires a distinct approach which can

optimize the traditional models of computing.

2.1 Scaling

For data-intensivecontext, contrary to the small

number of high-end servers, low-end-servers are considered.

The symmetric multiprocessing machines stand up to be

costlier with large amount of shared memory, which justifies

being no cost efficient. ―A survey of five thousand Google

servers over a six-month period shows that serversoperate

most of the time at between 10% and 50% utilization
[8]

, which

is an energyinefficient operating region‖.Furthermore,

Datacenter efficiency is a challenge to address on the scaling

of data-intensive computing.
[8]

2.2 Movement

The high-performance computing algorithms have

―processing nodes‖ and ―storage nodes‖ linked together over

high-capacity interconnections. Most of the data-intensive

algorithms are less efficient in processorutilization, literally

means to have no separation between the compute and storage

in the network. In the contrary, MapReduce assumes to

represent an architecture which has the processors and storage

co-located. Such scenarios justify the responsibility of the

distributed file system for managing the data- over the

MapReduce.

2.3 Sequential negating random access.

A challenge to store the relevant datasets onto

memory gives rise to a question, what is the efficiency of the

Seektime? TheData-intensive processing literally means to

imbibe the fundamentality of memory store to be sequential

and having no technique of random access which could

impact the efficiency. Furthermore, during the random access,

the efficiency of theread headsis mostly negotiable to be zero.

Hence, it is advisableto avoid random data access. ―A simple

scenario
 [9]

 poignantly illustrates the large performance gap

between sequential operations and random seeks: assume a 1

terabyte database containing 10
10

 100-byte records. Given

reasonable assumptions about disk latency and throughput, a

back-of-the-envelope calculation will show that updating 1%

of the records (by accessing and then mutating each record)

will take about a month on a single machine. On the other

hand, if one simply reads the entire database and rewrites all

the records (mutating those that need updating), the process

would finish in under a work day on a single machine.

Sequential data access is, literally, orders of magnitude faster

than random data access‖.
[8] [10]

III. BACKGROUND

3.1 The Map Reduce Algorithm

The MapReduce algorithm consists of the tasks Mapping and

Reducing.Input is passed onto the Mapper instance post

which the syntheses of the input into tokens are done. The

tokens are then mapped following the shuffling and sorting

of the matching pairs is done. Now the Reduction task

includes the searching and reducing the matching pairs or

data.

A MapReduce algorithm assists in sending the Map &

Reduce the tasks to manageable servers in a cluster.The

mathematical algorithms include the following,

 Sorting: One of the basic MapReduce algorithms to

process and analyze data. MapReduce implements

sorting algorithm and thus automatically sort the

output key-value pairs from the mapper based on the

keys.

 Searching: Searching helps in the phases-Combiner

(optional) and Reduce

 Indexing: The indexing technique which is basically

used in the MapReduce is termed as inverted

index. Search engines like Google and Bing uses

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 17

inverted indexing technique as it has batch indexing

technique, the procedural technique profound to be

optimal. It is based on A Mapper implementation.

 TF-IDF[Term Frequency − Inverse Document

Frequency]:It is a text processing algorithm and a

common web analysis algorithm. The term

frequency refers to the occurrence of term in a

document.

3.2 Streaming

It is a fundamental model for computations on massive

datasets (Alon et al., 1999; Henzinger et al., 1998). The earlier

design of the model depicts a defined number of passes on the

data and a poly-logarithmic space of size n. In the semi-

streaming model, a logarithmic number of passes

andO(n_polylog n) space (Feigenbaum et al., 2005) were

allowed. A comparison to these models and MapReduce

would depict a mere difference with regard to the Model of

Computation. Feldman et al. (2007) explore the relationship

between streaming and MapReduce algorithms. Streaming is

used in a wide range of data-intensive oriented applications,

where the nature of data is transient data stream rather than

persistent. Over the wide range of scope, few applications

include, financial applications, network monitoring, security

and sensor networks. To define a data stream, literally, it is a

continuous, ordered sequence of items. Data streams differ

from the traditional batch model in several ways:

 The online arrival of data in the Stream;

 Is the order of the Item a prime component over

efficiency?

 A mere dependency of streams and size;

 Post processing activity: Discarded or archived;

The last fact implies that, items cannot be retrieved easily

unless they are explicitly stored in memory, which is usually

small compared to the size of the input data streams.

IV. PROBLEM ANALYSIS

The Similarity self-join computes pairs of objects in

a collection holding a criterion of having the

valuesimilaritythat satisfies a defined condition. For instance,

in identifying the users based on the category or patronized

images in a particular set viz., animals. Identifiable problem in

similarity self-join is, on assumption- Consider the collection

of objects having the criteria viz., Medical. The aim is to

identify the mostly similar objects according to the similar

function, say- dental. The task of discoveringsimilar objects

within a given collection is common to many real worlddata

mining and machine learning problems.

The recommendations by Item-based and user-based

algorithms mostly require computing on pair-wise and

similarity among users or items. Since the count of users and

objects would be large, the similarity scores are usually

computed off-line.Near duplicate detection is commonly

performed as a pre-processing step before building a

document index. On identification, it can be even used to

detect the redundant document,which can therefore be

removed or it can even be used as content farms and spam

websitesexploiting content repurposing strategies.Near

duplicate detection finds application also in the area of

copyright protection as a tool for discovering plagiarism

Density-based clustering algorithms like DBSCAN

(Ester et al., 1996) or OPTICS (Ankerst et al., 1999)

inherently join the input data based on similarity relationships.

Correlation clustering (Bansal et al., 2004) uses similarity

relationship between the objects instead of the actual

representation of the objects. All these algorithms will draw

high benefit from efficient and scalable MapReduce

implementations of similarity joins.

4.1 Analysis of Existing MR Algorithm

4.1.1 MapReduce Term-Filtering (ELSA)

―Elsayed et al. (2008) present a MapReduce implementation

of the Term-Filtering method. ―The algorithm runs two

consecutive MR jobs, the firstbuilds an inverted index and the

second computes the similarities‖.
[25]

―Indexing: Given a document di, for each term, the mapper

emits the termas the key, and a tuple <i; di[t]> consisting of

document ID and weight asthe value. The shuffle phase of

MR groups these tuples by term anddelivers these inverted

lists to the reducers that write them to disk.‖
[25]

“Similarity: Given the inverted list of term t, the mapper

produces the contribution wij [t] = di[t]. dj [t] for every pair of

documents where theterm t co-occurs. This value is associated

with a key consisting of the pairof document IDs <hi,ji>. For

any document pair the shuffle phase will passto the reducer

the contribution list Wij = {wij [t] |wij [t] > 0; ∀t €L}from the

various terms, which simply need to be summed up.‖
[25]

Map: <i, di> [<t; <i, di[t]>>| di[t] > 0]

Reduce: <t, [<i, di[t]>,<j, dj [t]>,…]> [<t, [<i, di[t]>,<j, dj [t]>,]>]

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 18

―For ease of explanation, the document vectors are not

normalized. Term-Filteringavoids computing similarity scores

of documents that do not share anyterm. For the special case

in which an inverted list contains only one document,the

similarity Map function does not produce any output. Thetwo

main problems of ELSA result evident from looking at the

image.First, long inverted lists may produce a load imbalance

and slow downthe algorithm considerably, as for term ―B‖ in

the figure. Second, thealgorithm computes low similarity

scores which are not useful for thetypical applications, as for

document pair <d1; d2> in the figure.‖
[25]

4.1.2 MapReduce Prefix-Filtering (VERN)

―Vernica et al. (2010) present a MapReduce algorithm based

on Prefix- Filtering that uses only one MR. For each term in

the signature of a document t €S(di) as defined by Prefix-

Filtering, the map function outputs a tuple with key the term t

itself and value the whole document di. The shuffle phase

delivers to each reducer a small sub-collection of documents

that share at least one term in their signatures. This process

can be thought as the creation of an inverted index of the

signatures, where each posting is the document itself rather

than a simple ID. Finally, each reducer finds similar pairs

among candidates by using state-of-the-art serial algorithms

(Xiao et al., 2008). The Map and Reduce functions are as

follows‖.
―[25]

Map: <t,[<i,di[t]>,<j,dj [t]>,….]> [<<i.j>,wij[t]>]

Reduce: <<i, j>,wij> [<<i, j>,σ(di,dj) = 𝑤𝑛
𝑤€𝑊ij >

Map: <i, di> [<t, di>|t€S(di)]

Reduce: <t,Dv=[di,dj,…]> [<<i, j>, σ(di,dj) >>|di,dj€Dv]

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 19

―Light gray terms aretrimmed from the document by using

Prefix-Filtering. Each document isreplicated once for each

non-trimmed term it contains. Finally, the reducercomputes

the similarity of the bag of documents it receives by

employinga serial SSJ algorithm. VERN computes

thesimilarity of the pair <d1; d3> multiple times at different

reducers‖.
[25]

4.2 Proposed Algorithm

The proposed system would be an extension of the ELSA

algorithm. The algorithm includes the indexing phase

following the computational phase. The proposed algorithm

would shorten the inverted lists by employing Prefix-Filtering

.The effect of Prefix-Filtering is to reduce the portion of

document indexed. The terms occurring in di up to position b

(di), or bi for short, need not be indexed. By sorting terms in

decreasing order of frequency, the most frequent terms are

discarded. This trimming shortens the longest inverted lists

and brings a significant performance gain.

4.2.1 Cost analysis:

Indeed, estimating the cost of a MapReduce algorithm is quite

difficult, because of the inherent parallelism, the hidden cost

of the shuffling phase, the overlap among computation and

communication managed implicitly by the framework, the

non-determinism introduced by combiners and so on. The

proposed model separately, the three main steps of a

MapReduce jobs: the Map and Reduce functions, and the

volume of the data to be shuffled. In particular, the cost

associated to the function instance with the largest input is

considered.

V. CONCLUSION

The paper brings an analysis of the architectural and

theoretical understanding of the problem and the proposed

algorithm which helps in the load analysis and reduction. The

empirical and theoretical analyses showed that there are

limitations with present algorithm which can be optimized to

handle the high volume indexed data. The advanced data

analysis platform that employs a purely index-trim-based

framework, with various techniques to enable incremental

processing and fast in-memory processing for frequent keys is

proposed. In future work, the proposed system can be

extended to support a wider range of incremental computation

tasks with minimized I/O, online aggregation with early

approximate answers, and stream query processing with

window operations.

REFERENCES

[1]. A.M. Middleton. "Data-Intensive Technologies for Cloud
Computing," Handbook of Cloud Computing. Springer, 2010.

[2]. Vinton Cerf. An Information Avalanche. IEEE Computer, Vol. 40,

No. 1, 2007, pp. 104-105.
[3]. J.F. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. McArthur, S.

Minton, J. Xheneti, A. Toncheva, and A. Manfrediz, IDC. The

Expanding Digital Universe Archived , March 10, 2013, at

the Wayback Machine, White Paper, 2007.

[4]. P. Lyman, and H.R. Varian.How Much Information? 2003,

University of California at Berkeley, Research Report, 2003.
[5]. F. Berman. Got Data? A Guide to Data Preservation in the

Information Age, by Communications of the ACM, Vol. 51, No.

12, 2008, pp. 50-56.
[6]. Boduo Li, Edward Mazur, YanleiDiao, Andrew McGregor,

Prashant Shenoy. A Platform for Scalable One-Pass Analytics
using MapReduce,URL: https://people.cs.umass.edu/~mcgregor/

papers/11-sigmod.pdf

[7]. Alon Halevy, Peter Norvig, and Fernando Pereira. The
unreasonable effectiveness of data, Communications of the ACM,

24(2):8–12, 2009.

[8]. Jimmy Lin and Chris Dyer. Data-Intensive Text Processing with
MapReduce, April 11, 2010. URL:

https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-

final.pdf.
[9]. Arthur Asuncion, Padhraic Smyth, and Max Welling.

Asynchronous distributed learning of topic models , In Advances

in Neural Information Processing Systems 21 (NIPS 2008), pages
81–88, Vancouver, British Columbia, Canada, 2008.

[10]. Ricardo Baeza-Yates, Carlos Castillo, Flavio Junqueira,

VassilisPlachouras, and FabrizioSilvestri. Challenges on
distributed web retrieval, In Proceedings of the IEEE 23rd

International Conference on Data Engineering (ICDE 2007), pages

6–20, Istanbul, Turkey, 2007.
[11]. MapReduce Algorithm.URL:

https://www.tutorialspoint.com/map_reduce

/map_reduce_algorithm.htm
[12]. NogaAlon, Yossi Matias, and Mario Szegedy. The Space

Complexity of Approximatingthe Frequency Moments. Journal of

Computer and System Sciences, 58(1):137–147, 1999. 30, 116
[13]. M.R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on

data streams. Technical report, Digital Systems Research Center,

1998. URL http://www.eecs.harvard.edu/~michaelm/E210/
datastreams.pdf. 30

[14]. J Feigenbaum, S Kannan, A McGregor, S Suri, and J Zhang. On

Graph Problems in a Semi-Streaming Model. Theoretical

Computer Science, 348(2-3):207– 216, 2005. 30

[15]. Jon Feldman, S. Muthukrishnan, AnastasiosSidiropoulos, Clifford

Stein, and ZoyaSvitkina. On the Complexity of Processing
Massive, Unordered, Distributed Data. Arxiv, 2007. 30

[16]. Brian Babcock, ShivnathBabu, MayurDatar, Rajeev Motwani, and

Jennifer Widom. Models and issues in data stream systems. In
PODS ’02: 21st Symposium on Principles of Database Systems,

pages 1–30, New York, New York, USA, June 2002. ACM Press.

ISBN 1581135076. 30
[17]. Leonardo Neumeyer, Bruce Robbins, A. Nair, and A. Kesari. S4:

Distributed Stream Computing Platform. In ICDMW ’10: 10th

|L|

Trimmed Indexed

Trimmed Indexed

di

dj

bi
bj

0

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue X, October 2017 | ISSN 2278-2540

www.ijltemas.in Page 20

International Conference on Data Mining Workshops, pages 170–

177. IEEE, 2010. 15, 23, 31
[18]. Gul Agha. ACTORS: A Model of Concurrent Computation in

Distributed Systems. MIT Press, December 1986. ISBN 0-262-

01092-5. 23, 32, 118
[19]. Data Intensive Computing. URL:

https://en.wikipedia.org/wiki/Data-intensive_computing#

cite_note-1
[20]. Leonardo Neumeyer, Bruce Robbins, A. Nair, and A. Kesari. S4:

Distributed Stream Computing Platform. In ICDMW ’10: 10th

International Conference on Data Mining Workshops, pages 170–
177. IEEE, 2010. 15, 23, 31

[21]. MEster, H P Kriegel, J Sander, and X Xu. A density-based

algorithm for discovering clusters in large spatial databases with
noise. In KDD ’96: 2nd International Conference on Knowledge

Discovery and Data mining, volume 1996, pages 226– 231. AAAI

Press, 1996.
[22]. MihaelAnkerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg

Sander. OPTICS: Ordering points to identify the clustering

structure. In SIGMOD ’99: 25th ACM International Conference

on Management of Data, SIGMOD ’99, pages 49–60, New York,
NY, USA, 1999. ACM. ISBN 1-58113-084-8.

[23]. Tamer Elsayed, Jimmy Lin, and Douglas W Oard. Pairwise

document similarity in large collections with MapReduce. In HLT

’08: 46th Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies, pages 265–268.

Association for Computational Linguistics, June 2008.
[24]. RaresVernica, Michael J. Carey, and Chen Li. Efficient parallel

set-similarity joins using MapReduce. In SIGMOD ’10: 36th

International Conference on Management of Data, pages 495–506,

New York, New York, USA, 2010. ACM Press. ISBN
9781450300322.

[25]. Gianmarco De FrancisciMorales .Big Data and theWeb:

Algorithms forData Intensive Scalable Computing, IMT Institute
for Advanced Studies Lucca, Italy2012.

