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Abstract: - In this paper, a two stage optimization technique is 

presented for optimum design of planar slider-crank mechanism. 

The slider-crank mechanism needs to be dynamically balanced to 

reduce vibrations and noise in the engine and to improve the 

vehicle performance. For dynamic balancing, minimization of 

the shaking force and the shaking moment is achieved by finding 

optimum mass distribution of crank and connecting rod using 

the equimomental system of point-masses in the first stage of the 

optimization. In the second stage, their shapes are synthesized 

systematically by closed parametric curve, i.e., cubic B-spline 

curve corresponding to the optimum inertial parameters found 

in the first stage. The multi-objective optimization problem to 

minimize both the shaking force and the shaking moment is 

solved using recently developedevolutionary optimization 

algorithms–“Teaching-learning-basedoptimization algorithm 

(TLBO)”. The computational performance of TLBO is compared 

with another evolutionary optimization algorithm (genetic 

algorithm). 

Keywords: Dynamic balancing, Equimomental system, Link 

shape, Optimization, Slider-crank mechanism, Teaching-

learning-based optimization algorithm 

I. INTRODUCTION 

he slider-crank mechanism consisting of crankshaft, 

connecting rod and piston is the fundamental mechanism 

used for vehicle engines. The shaking force and shaking 

moment in the mechanism are defined as the resultant inertial 

forces and moments of the moving links [1] and need to be 

eliminated to dynamically balance the mechanism. For an 

unbalanced mechanism, these forces and moments are 

transmitted to the frame whichworsenthe dynamic 

performance of vehicle engine and generate vibrations, wear 

and noise. It leads to expensive repairs and replacement of 

crankshaft and connecting rod and their reverse effects on the 

other parts such as cylinder block and piston.Few review 

papers discuss the methods to reduce the shaking force and 

shaking moment based on different approaches [2-4]. To 

achieve full force balance in the mechanism, the total mass 

center of moving links is made stationary either by adding 

counterweights [5] or by mass redistribution [6, 7]. The 

complete force balancing increases other dynamic quantities 

like shaking moment and driving torque in the mechanism [8]. 

For complete balancing of moment in the mechanism, the 

total angular momentum of the moving links is eliminated by 

using duplicate mechanism [3], inertia or disk counterweights 

[9-11] and moment balancing idler loops [12]. However, the 

complexity and overall mass for mechanism are increased in 

these methods.  

Alternatively, the shaking force and shaking moment 

are minimized simultaneously by optimizing links inertial 

properties, i.e., mass, CG location and moment of inertia. The 

conventional optimization technique is used to optimally 

balance the planar mechanisms [13, 14] and to analyse the 

sensitivity of shaking force and shaking moment to the design 

variables [15]. The mechanism balancing problem is 

formulated as a multi-objective optimization problem and 

solved using evolutionary optimization techniques like 

particle swarm optimization [16] and genetic algorithm [17-

18].   

Once the optimized inertial properties of mechanism 

links are obtained, their shapes are to be decided to carry 

loads. A method to find link shapes is presented in [19] by 

discretizing initial assumed shape into small mass elements 

and locate them systematically along the link length. The link 

shapes are synthesized on the basis of maximum work done 

by taking volume of all links as constraints [20]. Similarly, the 

link shapes are formed through topology optimization based 

on parametric curves [21] and non-intersecting closed 

polygons [22]. The Evolutionary Structural Optimization 

(ESO) method is used to optimize the shaft shape for rotating 

machinery by gradually removing the ineffectively used 

material from the design domain [23, 24]. Alternatively, by 

identifying the feasible material domain associated with the 

link geometries, the geometric shapes are determined for 

interference free motion [25]. Some other methods are 

available in the literature for mechanism dimensional 

synthesis to generate specified path or motion based on 

graphical and analytical techniques [26, 27].However, these 

methods have limitations as they require a pre-defined design 

domain to start with. Also, they do not consider the dynamic 

balance for the mechanisms. 

In this paper, a two stage optimization method is 

presented to synthesize link shapes for minimizing the 

shaking force and shaking moment in the planar slider-crank 

mechanism. In the first stage, the balancing problem is 

formulated as an optimization problem by modeling the rigid 

links of mechanism as dynamically equivalent system of 

point-masses, known as equimomental system [28, 29]. This 

problem is presented as a multi-objective optimization 

problem to minimize both shaking force and shaking moment 

and is solved using genetic algorithm (GA) and recently 

developed teaching-learning-based algorithm (TLBO).   

For the optimum inertial properties found in the first 

stage, the link shapes are synthesized in the second stage by 

T 
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modeling the link geometries as closed parametric curves, i.e., 

cubic B-spline curve. The objective function is formulated as 

the difference between desired optimum inertia value and 

resulting link inertia value and minimized by taking the 

positions of the control points of curve boundary as the design 

variables. Note that evolutionary optimization algorithms (GA 

and TLBO) don’t require initial values of the design variables 

to solve an optimization problem. Therefore initial shape or 

design domain for links shape synthesis is not required in this 

method. The desired optimum mass and location of mass 

centers of the links found in the first stage are considered as 

the constraints in this stage. As a solution of this optimization 

problem, the boundary domain defined by parametric curves 

is evaluated to obtain mass and inertia of each link through 

Green’s theorem [30]. Hence, the dynamic balancing is 

achieved for a planar slider-crank mechanism by synthesizing 

its link shapes.    

The structure of the paper is as follows. In Section 2 ,  

the shaking force and shaking moment are determined for a 

planar slider-crank mechanism. The procedure for link shape 

synthesis is presented in Section 3. Section 4 presents the two 

stage optimization problem formulation. Anumerical 

example is solved using the proposed method and results are 

discussed in Section 5. Finally, conclusions are summarized 

in Section 6 .  

II. DETERMINATION OF SHAKING FORCE AND 

SHAKING MOMENT 

Figure 1 shows anoffset planar slider-crank mechanism where 

the fixed link is detached from the moving links to show the 

reactions. The shaking force is defined as the reaction of the 

vector sum of all the inertia forces whereas the shaking 

moment is the reaction of the resultant of the inertia moment 

and the moment of the inertia forces about a fixed point. Once 

all the joint reactions are determined, the shaking force and 

shaking moment at and about joint 1 are obtained as [1]: 

)( 0301sh fff  and ) x ( 03003

e

1sh fa nnn

   (1) 

 

Fig. 1 Definitions of parameters for a planar slider-crank mechanism 

In Eq. (1), f01 and f03 are the reaction forces of the frame on 

the links #1 and #3, respectively. The driving torque applied 

at joint #1 is represented by
e

1n while n03 represents the 

reaction of the inertia couple about joint #3. a0 represents the 

vector from O1 to O4. 

III. LINK SHAPE SYNTHESIS 

The link shape is synthesized using parametric closed cubic B-

spline curve as shown in Fig. 2. This curve interpolates or 

approximates a set of n+1 control points, P0, P1,…,Pn[31, 32] 

and defined in Eq. (2). 

 

 
 

Fig. 2 Closed cubic B-spline curve and its control points 
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In Eq. (2), the parametersk, )(, uN ki
and u are defined as the 

degree of curve, B-spline blending function and parametric 

knots, respectively. The control points form the vertices of the 

characteristic polygon of the B-spline curve as shown in Fig. 2. 

The cubic B-spline curve is a composite sequence of curve 

segments connected with C2 continuity which blends two 

curve segments with same curvature. The coordinates of any 

point on the ith segment of the curve is given as:  

6
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In Eqs. (3-4), (xi-1 ,yi-1), (xi , yi), etc. are the coordinates of 

points Pi-1, Pi, etc., respectively. The inertial properties of the 

link synthesized using closed cubic B-spline curve are 

calculated using Green’s theorem [33]. The area A, centroid (

x , y ) and area moment of inertia about centroidal axes (Ixx, 

Iyy, Izz) of the closed curve made of n cubic B-spline segments 

are calculated as: 
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The first derivatives )(uxi
 and )(uyi

 of )(uxi and )(uyi w.r.t. 

u, respectively, in Eqs. (9-13) are given by: 
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For geometric properties defined in Eqs. (9-14), the mass and 

mass moment of inertia of a link with shape represented by 

closed curve are calculated as: 

Atρm 
     

   
(21) 

tρII zz
     

   
(22) 

wheret and ρ represent thickness and material density for the 

link, respectively.  

IV. TWO STAGE OPTIMIZATION PROBLEM 

FORMULATION 

4.1 First stage - Dynamic balancing 

To dynamically balance the planar slider-crank mechanism, 

an optimization problem is formulated to minimize the 

shaking force and shaking moment using the concept of 

equimomental point-mass system. The crank and connecting 

rod are systematically converted into a system of three 

equimomental point-masses and the point-mass parameters 

are taken as the design variables. A point mass is identified by 

three parameters, so 9-vector, xi, of design variables for each 

link is defined as: 

T

333222111 ][ iiiiiiiiii θlmθlmθlmx  

 fori=1, 2  (23) 

Where mij is jth point mass of ith link, and lij and θij are polar 

coordinates of it in the body fixed frame. Here the crank and 

connecting rod are considered for the optimal distribution of 

their masses. Hence, the design vector, x, for the mechanism 

is given by: 

TT

2

T

1 ][ xxx      

   (24) 

Considering the RMS values of the magnitude of shaking 

force, fsh,rms, and shaking moment, nsh,rms, defined in Eqs. (1), 

the optimization problem is posed as weighted sum of the 

force and moment as: 

rmssh,2rmssh,1 nfZMinimize ww    

   (25) 

2
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j
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j
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for i = 1, 2, and  j = 1, 2,3   

  (26) 

wherew1 and w2 are the weighting factors used to assign 

weightage to shaking force and shaking moment, respectively.  

4.2 Second stage - Shape formation for balanced mechanism 

After obtaining optimized inertial parameters of the crank and 

connecting rodin the first stage, an optimization problem is now 
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formulated to find the corresponding link shapes. The Cartesian 

coordinates of control points of cubic B-spline curve are taken 

as design variables as shown in Fig. 3.  

 
 

Fig. 3 Closed cubic B-spline curve representing link shape and its control 

points 

 

The link length between joints origins Oi to Oi+1 is divided 

into equal parts. To maintain symmetrical shape to have 

product of inertia zero, y coordinates are taken as the design 

variables. The extensions of link beyond joints origins Oi and 

Oi+1 are controlled by P0, P1, Pn-1 at right end and Pn/2-1, Pn/2, 

Pn/2+1 at left end. At right end, x coordinate of P0, y 

coordinates of P1 and Pn-1 are chosen as the design variables 

and same is done at left end. Finally, in this paper, the design 

vector is defined as:   

T

1-1/2/21-/210 ] ...    ...  [ nnnn yyxyyx x   

   (27) 

The inertial properties of resulting shapes are used as the 

constraints for this optimization problem. These constraints 

ensure that the links with optimum shapes have the same 

inertial properties as that of the dynamically balanced 

mechanism links. The objective function is formulated to 

minimize the percentage error in resulting links inertia values 

as: 

100x 
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  (29) 

here parameters with superscript ‘*’ represent optimum 

parameters obtained in the first stage and subscript ‘i’ is used 

for ith link of mechanism. The flow chart shown in Fig. 4 

illustrates the proposed optimization method.    

V. APPLICATION, RESULTS AND DISCUSSIONS 

The optimization problem formulated in previous section can 

be solved using either conventional or evolutionary 

optimization methods. The conventional or classical methods 

use gradient information of objective function with respect to 

the design variables. These methods converge on the optimum 

solution near to the initial guess point and thus produce local 

optimum solution [34, 35]. The disadvantages associated with 

the conventional optimization methods are that (1) the end 

result depends upon starting point and (2) the computational 

complexity is involved in calculation of derivatives and 

hessian matrices. 

The genetic algorithm (GA) is an evolutionary search 

and optimization algorithm based on the mechanics of natural 

genetics and natural selection [36, 37]. This algorithm 

evaluates only the objective function and genetic operators - 

selection, crossover and mutation are used for exploring the 

design space. The drawbacks of GA are that (1) it requires a 

large amount of calculation and (2) there is no absolute 

guarantee that a global solution is obtained. These drawbacks 

are overcome by using parallel computers and by executing 

the algorithm several times or allowing it to run longer [38].  

5.1 Teaching-learning-based optimization algorithm  

Similar to GA, recently developed teaching-learning-based 

optimization (TLBO) algorithm is a population based method 

and converges to the optimum solution by using a population 

of the solutions. TLBO is known as a parameter-less 

optimization algorithm as no algorithm specific parameters 

are required to be handled to implement it [39]. Whereas, in 

GA, the parameters like population size, crossover rate and 

mutation rate are to be optimally controlled to solve the 

optimization problem. TLBO increases the convergence rate 

by using the best solution of the current iteration to change the 

existing solution in the population. For different multi-

objective unconstrained and constrained benchmark functions, 

TLBO was found more efficient than GA and other popular 

optimization techniques [40].  

TLBO is a nature inspired optimization algorithm based on 

teaching learning process and divided into two phases: (1) 

Teacher phase and (2) Learner phase. It considers the effect of 

teacher’s influence on the output of learners in terms of the 

results. The teacher is considered as a highly learned person 

who shares knowledge with the learners and trains them to 

obtain better results. For TLBO, the parameters are defined as:

   

 



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 

Volume VI, Issue XI, November 2017 | ISSN 2278-2540 

 

www.ijltemas.in Page 5 
 

 

Fig. 4 Two stage optimization scheme to balance mechanism and shape synthesis 
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The learner who gets best result acts as the teacher and tries to 

increase the mean of the population in the ‘Teacher phase’. In 

‘Learner’s phase’, the learners increase their knowledge by 

interaction among themselves. Eachiteration includes both the 

phases and the algorithm iterates to find the optimum solution 

till the termination criteria are satisfied. To handle the 

constraints, the heuristic constrained handling method [41] is 

used in which the tournament selection operator selects and 

compares two solutions by following specific heuristic rules. 

These rules are implemented at the end of the teacher phase 

and the learner phase. This algorithm is successfully used for 

the optimization of mechanical design problems such as 

springs, bearings, pulleys and gear train [42]. However, it is 

used for the first time for mechanism balancing as an 

optimization solver in this paper. 

5.2 Numerical example 

In this section, the effectiveness of proposed optimization 

method is shown by applying it to a numerical problem of 

planar slier-crank mechanism. A cam mechanism with 

counterweightis used [43] to simultaneously reduce the 

shaking force and shaking moment in this mechanism. 

Whereas, the balancing problem is here framed as a multi-

objective optimization problem to simultaneously minimize 

both the quantities in the proposed method. As shaking force 

and shaking moment are of different units, these quantities 

need to be dimensionless for adding them in the objective 

function. For this, the mechanism parameters are made 

dimensionless with respect to the parameters of the crank. 

Further the dimension of the problem is reduced by assigning 

five parameters for each link which are defined in Fig. 5(b) as: 

θi1=0; θi2=2π/3; θi3=4π/3 and li2=li3=li1

  

  
(30) 

Out of nine variables, mij, lij, θij, for j=1, 2, 3, for each link, the 

other four point-mass parameters, mi1, mi2, mi3 and li1 are 

brought into the optimization scheme as the design variables. 

Considering
o

min, 0.5 ii mm  , 
o

max, 5 ii mm   and 

o

min, 0.5 ii II   for crank and connecting rod, MATLAB 

codes are developed for the optimization problemsand solved 

using TLBO and GA. The superscript ‘o’ represents 

parameters of the original mechanism.To find the link shapes, 

thickness of links is taken as 10 percent of the crank length 

and the link material is chosen as the mild steel (density = 

7850 kg/m3) for deciding the density and maximum 

permissible stress. The inertial properties of links are 

calculated using Eqs. (21-22).As shown in Fig. 1, link length, 

mass and other geometric parameters of the unbalanced planar 

slider-crank mechanism are given in Table 1 and they are 

defined in Fig. 5(a). 

Table 1 Parameters of original mechanism 

Link i 
Length ai 

(m) 

Mass mi 

(kg) 

Moment of inertia 

Iczzi 

(kg-m2) 

CG distance di 

(m) 

CG angle 

θi 

(deg) 

1 0.292 2 0.03 0.146 0 

2 0.427 3 0.14 0.214 0 

3 - 4 - 0 0 

 

                                      Fig. 5(a)Rigid link                     Fig. 5(b) Point-masses 
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Table 2 The RMS values of normalized dynamic quantities  

 RMS values 

 Shakingforce ShakingMoment 

Original mechanism 2.2188 0.4597 

Optimized mechanism 

GA 

1.2314 

(-44.49%) 

0.2820 

(-38.66%) 

Optimized mechanism 

TLBO 

1.1438 

(-48.45%) 

0.2568 

(-44.14%) 

Table 3 Parameters of balanced mechanism 

Link i 
Length ai 

(m) 

Mass mi 

(kg) 

Moment of inertia 

Iczzi 

(kg-m2) 

CG distance di 

(m) 

CG angle 

θi 

(deg) 

1 0.292 3.7821 0.0494 0.0027 180 

2 0.427 1.5552 0.0285 0.1633 0 

 

The comparison of original RMS values of shaking force and 

shaking moment with those of optimum values are provided in 

Table 2. Table 3 gives parameters of the optimized links for 

balanced mechanism. The optimization algorithm’s efficiency 

for converging to the optimum solution is shown by the plots 

between function value and function evaluations in Fig. 6. 

With the default values of genetic operators, the genetic 

algorithm was run for 100 generations and reached to the 

optimum value of objective function as 1.9458 after 60160 

function evaluations whereas TLBO found the optimum value 

as 0.7006 after 32000 function evaluations as shown in Fig. 6. 

Thus TLBO found better result than GA and required47% less 

function evaluations than thoserequired by GA. This shows 

that TLBO is computationally more efficient algorithm than 

GA for the optimization problem considered to reduce 

approximately same amount of shaking force and shaking 

moment. The variations of the shaking force and shaking 

moment over the complete crank cycle are shown in Fig. 7. 

 

Fig. 6Convergence of objective function for GA and TLBO algorithms 

 

 

Fig. 7 Variations of shaking force and shaking moment for completecrank 

cycle 
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Next, the optimization problem for link shape formation 

presented in Eqs. (28-29) is solved and the resulting link 

shapes are shown in Fig. 8. 

 

Fig. 8 Optimized link shapes for planar slider-crank mechanism [figure drawn 

on scale] 

The method earlier used to simultaneously reduce the 

shaking force and shaking moment for the problem considered 

suggests use of additional members like cam mechanism and 

counterweight [43]. Alternatively, here reductions in the 

shaking force and shaking moment are achieved by 

redistributing masses optimally as shown in Fig. 8. Hence, the 

optimal dynamic balancing is achieved numerically by 

redistribution of link masses. The RMS values of shaking 

force and shaking moment are reduced by 48%and 44%, 

respectively. 

The advantage associated with the proposed method 

is that the links of the balanced mechanism are of the uniform 

thickness while the force and inertia counterweights added to 

the original mechanisms in traditional methods are of large 

thickness and radius compared to the original link parameters. 

Also, the proposed method doesn’t require any pre-defined 

shapes or design domain to start with. The percentage error of 

resulting inertia values were found within ± 5 percent. The 

resulting stresses for crank and connecting rod of the balanced 

mechanism can be calculated at the weakest sections under 

external loads.    

VI. CONCLUSIONS 

A two stage optimizationmethod for optimum 

dynamicbalancing and synthesis of link shapes for planar 

slider-crank mechanism is proposed in this paper. It is 

demonstrated that the conversion of the rigid links into 

equimomental system of point-masses is usefulin solving the 

balancing problem. The optimal mass distribution of links by 

taking point-mass parameters as the design variables reduce 

the inertial force and moment transmitted to the frame 

significantly. For the numerical problem considered, the 

proposed method reduces the RMS values of shaking force 

and shaking moment by about 48% and 44%, respectively. 

The method is quite general and equally applicable for all 

single or multiloop mechanisms where the analytical solutions 

are not available. The proposed method also demonstrates 

teaching-learning-based algorithm and genetic algorithm as a 

solver in mechanism balancing. In addition, the optimized 

values of link mass and inertia are effectively converted into 

physically possible shapes of links using closed B-spline 

curves. The novelty of the methodology is that it combines the 

dynamics and design solution for the mechanisms. 
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