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Abstract: Three dimensional inverse transient thermoelastic 

problem of a semi-infinite hollow cylinder is considered within 

the context of the theory of generalized thermoelasticity. The 

lower surface, upper surface and inner surface of the semi-

infinite hollow cylinder occupying the space 

}0,)(:),,{( 2/1223  zbyxaRzyxD  are 

known boundary conditions. Finite Marchi-Zgrablich transform 

and Fourier sine transform  techniques are used to determine the 

unknown temperature gradient, temperature distribution, 

displacement and thermal stresses on outer curved surface of a 

cylinder. The distribution of the considered physical variables 

are obtained and represented graphically.  

Keywords: Thermoelastic problem, semi-infinite hollow cylinder, 

Thermal Stresses, inverse problem, Marchi-Zgrablich transform 

and Fourier sine transform. 

I. INTRODUCTION 

hobragade et al. [1, 5-11] have investigated 

temperature distribution, displacement function, and 

stresses of a thin as well as thick hollow cylinder and 

Khobragade et al. [2] have established displacement function 

, temperature distribution and stresses of a semi-infinite 

cylinder.  

Yoon Hwan Choi et. al. [16] discussed the temperature 

distributions of the heated plate investigated with the 

condition that the line heating process was automatic. The 

temperature variations were also investigated with the 

changes of those three variables. The numerical results 

showed that the peak temperature decreased as the moving 

velocity of the heating source increased. It also revealed that 

the peak temperatures changed linearly with the changes of 

the heating source. Xijing Li, Hongtan Wu, Jingwei Zhou 

and Qun He [15] studied one-dimensional linear inverse heat 

problem. This ill-posed problem is replaced by the perturbed 

problem with a non localized boundary condition. After the 

derivation of its closed-form analytical solution, the 

calculation error can be determined by the comparison 

between the numerical and exact solutions. 

Michael J. Cialkowski and Andrzej Frąckowiak [12] 

presented analysis of a solution of Laplace equation with the 

use of FEM harmonic basic functions. The essence of the 

problem is aimed at presenting an approximate solution based 

on possibly large finite element. Introduction of harmonic 

functions allows reducing the order of numerical integration 

as compared to a classical Finite Element Method. Numerical 

calculations confirm good efficiency of the use of basic 

harmonic functions for resolving direct and inverse problems 

of stationary heat conduction. Gao-Lian Liu [4] studied the 

inverse heat conduction problem with free boundary and 

transformed into one with completely known boundary, which 

is much simpler to handle. As a by-product, the classical 

Kirchhoff’s transformation for accounting for variable 

conductivity is rederived and an invariance property of the 

inverse problem solution with respect to variable conductivity 

is indicated. Then a pair of complementary extremum 

principles is established on the image plane, providing a 

sound theoretical foundation for the Ritz’s method and finite 

element method (FEM). An example solved by FEM is also 

given.  

Michael J. Cialkowski [13] presented the application of heat 

polynomials for solving an inverse problem. The heat 

polynomials form the Treffetz Method for non-stationary heat 

conduction problem. They have been used as base functions 

in Finite Element Method. Application of heat polynomials 

permits to reduce the order of numerical integration as 

compared to the classical Finite Element Method with 

formulation of the matrix of system of equations. Gao-Lian 

Liu and Dao- Fang Zhang [3] discussed two methods of 

solution— generalized Ritz method and variable-domain 

FEM— both capable of handling problems with unknown 

boundaries  are suggested. Then, three sample numerical 

examples have been tested. The computational process is 

quite stable, and the results are encouraging. This variational 

approach can be extended straightforwardly to 3-D inverse 

problems as well as to other problems in mathematical 

physics.  In the present problem, an attempt is made to study 

the three dimensional inverse transient thermoelastic 

problems to determine the unknown temperature, temperature 

distribution, displacement function and thermal stresses on 

upper plane surface of a thin rectangular object occupying the 

K 
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region D: −a ≤ x ≤ a; −b ≤ y ≤ b; 0 ≤ z ≤ h with known 

boundary conditions. Here Marchi-Fasulo transforms and 

Laplace transform techniques have been used to find the 

solution of the problem. 

In the present paper, an attempt is made to study the theoretical 

solution for a thermoelastic problem to determine the 

temperature distribution, displacement and stress functions of a 

hollow cylinder with boundary conditions  occupying the space 

}0,)(:),,{( 2/1223 hzbyxaRzyxD  , where 

2122 )( yxr  . A transform defined by Zgrablich et al. [2] 

is used for investigation which is a generalization of Hankel’s 

double radiation finite transform and used to treat the problem 

with radiation type boundaries conditions.  

II.PROBLEM FORMULATION 

Consider a hollow cylinder as shown in the figure 1. The 

material of the cylinder is isotropic, homogenous and all 

properties are assumed to be constant. We assume that the 

cylinder is of a small thickness and its boundary surfaces 

remain traction free. The initial temperature of the cylinder is 

the same as the temperature of the surrounding medium, 

which is kept constant.  

The displacement function ),,( tzr  satisfying the 

differential equation as Khobragade [9] is 
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with 0  at ar   and br                                        (2)   

where  and ta  are Poisson ratio and linear coefficient of 

thermal expansion of the material of the cylinder respectively 

and ),,( tzrT  is the heating temperature of the cylinder at 

time t  satisfying the differential equation as Khobragade [9] 

is 
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where cρKκ /  is the thermal diffusivity of the material of 

the cylinder, K  is the conductivity of the medium, c  is its 

specific heat  and   is its calorific capacity (which is 

assumed to be constant) respectively, subject to the initial and 

boundary conditions  

FTM t )0,0,1,(     for all  bra   ,  z0              (4) 

),(),,1,( 11 tzfakTM r  , for all   z0  , 0t          (5)                          

),(),,1,( 22 tzfkTM r  for all   z0  , 0t         (6)                                 

),(),0,1,( tzHbTM r   (unknown)                                  (7) 

)0)0,0,1,( TM z
  for all  bra   , 0t                  (8) 

0),0,1,( TM z
     for all  bra   , 0t                (9) 

being:  

sfkfkskkfM   )ˆ(),,,(  

where the prime ( ^ ) denotes differentiation with respect to 

 ,  radiation constants are k  and k  on the curved surfaces 

of the plate respectively.  

The radial and axial displacement U and W satisfy the 

uncoupled thermoelastic equation as Khobragade [9]  are  
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The stress functions are given by 

0),,( tzarz , 0),,( tzbrz , 0),0,( trrz             (15)                       

ir ptza ),,( , or ptzb ),,( , 0),0,( trz       (16) 

where ip  and op  are the surface pressure assumed to be 

uniform over the boundaries of the cylinder. The stress 

functions are expressed in terms of the displacement 

components by the following relations as Khobragade [9] are 

 

Figure 1: Geometry of the problem 
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(20) 

where )21/(2   G  is the Lame’s constant, G  is the shear 

modulus and U, W are the displacement components.  

Equations (1) - (20) constitute the mathematical formulation 

of the problem under consideration 

III. SOLUTION OF THE OF THE PROBLEM 

Applying transform defined in [9] to the equations (3), (4) and 

(6) over the variable r  having 0p  with responds to the 

boundary conditions of type (5) and taking Fourier cosine 

transform , one obtains  
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where constants involved ),,(* sznT  are obtained by using 

boundary conditions (6). Finally applying the inversion 

theorems of transform defined in [9] and inverse Laplace 

transform by means of complex contour integration and the 

residue theorem, one obtains the expressions of the 

temperature distribution ),,( tzrT  and unknown temperature 

gradient H(z,t) for heating processes  respectively as 

 









1

2

210

0

),,()sin(2
),,(

n n

n

m

rkkSpz
tzrT






                         

                







 

 tdeFe

t

tqtq

0

22                              (22) 

 









1

2

210

0

),,()sin(2
),(

n n

n

m

bkkSpz
tzH






   

          







 

 tdeFe

t

tqtq

0

22                               (23) 

Where 
n are the roots of the transcendental equation  

)(
22 u

n
pq   

n is the transformation parameter as defined in appendix, m is 

the Fourier sine transform parameter.  

IV. DISPLACEMENT AND STRESS FUNCTION 

Substituting the value of temperature distribution from (22) in 

equation (1) one obtains the thermoelastic displacement 

function ),,( tzr as 
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Using (24) in the equations (11) and (12) one obtains 
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Substitution the value of (26), (27) in (17) to (20) one obtains 

the stress functions as 
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V. SPECIAL CASE  

Set )()1(),( 0rretrF t                                               (31)  (32) 

Applying finite Marchi-Zgrablich transform defined in [9] to 

the equation (31) one obtains 
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Substituting the value of (32) in the equations (21) to (31) one 
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),,()sin(2
),,(

n n

n

m

rkkSpz
tzrT






                         

                







 

 tdeFe

t

tqtq

0

22                              (33) 

 









1

2

210

0

),,()sin(2
),(

n n

n

m

bkkSpz
tzH






   

          







 


 tdeFe

t

tqtq

0

22                               (34) 

VI. NUMERICAL RESULTS, DISCUSSION AND REMARKS 

To interpret the numerical computation we consider material 

properties of low carbon steel (AISI 1119), which can be used 

for medium duty shafts, studs, pins, distributor cams, cam 

shafts, and universal joints having mechanical and thermal 

properties 

]/[97.13 2sm   ,29.0  )]/([9.51 KmW   and 

Cmmat

0/7.14   .  

Setting the physical parameter with 5.2a , 3b  and 

500h .  25.01 k , 25.02 k , sec1t . 

VII. CONCLUSION 

In this paper, we modify the conceptual idea proposed by 

Khobragade et al. [9] for hollow cylinder and the 

temperature distributions, displacement and stress functions 

on the curved surface bz   occupying the region of the 

cylinder ,bra    z0  have been obtained with the 

known boundary conditions.  We develop the analysis for the 

temperature field by introducing the transformation defined 

by Zgrablich et al, finite Fourier cosine transform techniques 

with boundary conditions of radiations type. The series 

solutions converge provided we take sufficient number of 

terms in the series. Since the thickness of cylinder is very 
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small, the series solution given here will be definitely 

convergent. Assigning suitable values to the parameters and 

functions in the series expressions can derive any particular 

case. The temperature, displacement and thermal stresses that 

are obtained can be applied to the design of useful structures 

or machines in engineering applications. 

APPENDIX 

Finite Marchi-Zgrablich Integral Transform: 

The finite Marchi-Zgrablich integral transform of )(rf  is 

defined as  


b

a
mpp drrSrfrmf ),,()()(                                  (A)                              

where 1 , 2 , 
1  and 

2  are the constants involved in the 

boundary conditions  

0)()( 21 
ar

rfrf   and 0)()( 21 
br

rfrf    

for the differential equation 

0)()/()()1()( 22  rfrprfrrf , )(nf p
 is the transform 

of )(rf  with respect to kernel ),,( rS mp   and weight 

function r    

The inversion of equation (A) is given by 









1

2
)],,([

),,()(
)(

m
b

a
mp

mpp

drrSr

rSmf
rf




                                    

where kernel function ),,( rS mp   can be defined as 

)],(),([)(),,( bYaYrJrS mpmpmpmp    

                         )],(),([)( bJaJrY mpmpmp                   

and )( rJ p   and )( rYp   are Bessel function of first and 

second kind respectively.  

OPERATIONAL PROPERTY: 

  drrSrfrprfrrfr mp

b

a
),,()()/()()/1()( 222       

         brmp rfrfbSb 
 )()(),,()( 212   

        )()()(),,()/( 2
212 mfrfrfaSa pmarmp   
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