
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VI, June 2017 | ISSN 2278-2540

www.ijltemas.in Page 39

Performance Comparison of Different Sorting

Algorithms
Purvi Prajapati*, Nikita Bhatt

#
, Nirav Bhatt*

#
U & P U Patel Department of Computer Engineering, CSPIT, CHARUSAT, Gujarat, India

*
Department of Information Technology, CSPIT, CHARUSAT, Gujarat, India

Abstract— Sorting is the basic operation in most of the

applications of computer science. Sorting means to arrange data

in particular order inside computer. In this paper we have

discussed performance of different sorting algorithms with their

advantages and disadvantages. This paper also represents the

application areas for different sorting algorithms. Main goal of

this paper is to compare the performance of different sorting

algorithms based on different parameters.

Keywords— Algorithm, Time Complexity, Space Complexity

I. INTRODUCTION

n computer application sorting is the process of arranging

data in particular order. The process of sorting arranges

numerical data in increasing or decreasing order and text data

in alphabetical order. Now a day’s big issue is to handle large

amount of data in computer and for that sorting is an essential

task. Sorting improves the efficiency of searching particular

data in computer. There are many techniques available for

sorting. The selection of the particular sorting technique

depends on type of data. A Sorting is an important and widely

studied issue, where the execution time and the required

resources for computation is of extreme importance, especially

if it is dealing with real-time data processing. So it is essential

to study and to compare its performance for all the available

sorting algorithms. [1, 2, 4, 6]

The importance of sorting lies in the fact that searching can

be optimized to a very fast, if data is stored in a sorted manner.

Sorting is also used to represent data in more readable formats.

Following are some of the real life examples of sorting: Words

in dictionary, File system in Directory, Book Index, Event

calendar, Musical compact disks, Attendance sheet, etc.

II. TYPES OF SORTING TECHNIQUES

There are many categories for the sorting techniques.

Depending upon the category of the algorithm we could

analyze the sorting algorithm. [2]

A. Internal and external sorting

If sorting process is performed within main memory than it

is referred as an internal sorting. If amount of data is so large

that requires secondary memory for the soring process than it is

referred as an external sorting. This technique is also referred

as in-place sorting and not-in place sorting.

B. Stable and Not Stable Sorting

The sorting process maintains the same sequence of the data

with same values is referred as a stable sorting. And if after

Sorting process order of the data with same values is changed

than it is referred as not-stable sorting.

C. Adaptive and Non-Adaptive Sorting

A sorting algorithm is said to be adaptive, if it takes

advantage of already sorted data in the list that is to be sorted.

That is, while sorting if the input has some data already

sorted, adaptive algorithms will take this in to account and will

not apply sorting on them.

A non-adaptive algorithm is one which does not take into

account the elements which are already sorted. They apply

sorting process on all the data to confirm the desired sorted

data.

D. Comparison based Sorting and Distribution based Sorting

In comparison based sorting process elements are compared

with other elements to find element’s correct place in the sorted

list. In distribution based sorting all the elements are distributed

over memory space and then group the elements to get sorted

list.

E. In-place Sorting and Out of place Sorting

The sorting process maintains the same input space for

generating output. The input is overwritten by exchanges the

elements for generating the sorted output sequences. It requires

constant amount of extra storage for the sorting process.

Generally in place algorithms requires O(1) memory beyond

the element being sorted.

The sorting process which requires some extra storage for the

output is referred as Out of place sorting algorithm.

III. PERFORMANCE OF SORTING TECHNIQUES

I

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VI, June 2017 | ISSN 2278-2540

www.ijltemas.in Page 40

Algorithm is efficient based on time complexity and space

complexity. Time complexity is total amount of time required

to execute the algorithm and space complexity means total

amount of storage required in memory by the algorithm. Below

table 1 represents characteristics of different sorting

techniques. And table 2 shows advantages and disadvantages

of sorting techniques.

TABLE 1: PERFORMANCE CHARACTERISTICS OF SORTING TECHNIQUES [1, 2, 5, 8, 10]

Technique Approach
Data

Structure

Time Complexity

n : number of input elements
Worst case

Space

Complexity

Stable In place

Best Case
Average

Case
Worst Case

Bubble Sort
Comparison

Based
Array O(n2) O(n2) O(n2) O(1) auxiliary Yes Yes

Modified Bubble

Sort

Comparison

Based
Array O(n) O(n2) O(n2) O(1) auxiliary Yes Yes

Selection Sort
Comparison

Based
Array O(n2) O(n2) O(n2)

O(n) total, O(1)

auxiliary
Yes Yes

Enhanced

Selection Sort

Comparison

Based
Array O(n2) O(n2) O(n2)

O(n) total, O(1)

auxiliary
Yes Yes

Insertion sort
Comparison

Based
Array O(n) O(n2) O(n2)

O(n) total, O(1)

auxiliary
Yes Yes

Merge Sort
Divide and
Conquer

Array O(nlogn) O(nlogn) O(nlogn)
O(n) total, O(n)

auxiliary
Yes No

Quick sort
Divide and

Conquer
Array O(nlogn) O(nlogn) O(n2) O(n) auxiliary Yes Yes

Parallel
Quick sort

Divide and
Conquer

Array O(nlogn) O(nlogn) O(nlogn) O(n) auxiliary Yes Yes

Randomized

Quick Sort

Divide and

Conquer
Array O(nlogn) O(nlogn) O(nlogn) O(n) auxiliary Yes Yes

Hyper Quick sort
Divide and
Conquer

Array O(nlogn) O(nlogn) O(nlogn) O(n) auxiliary Yes Yes

MQ sort

(Combination of

Merge and Quick
Sort)

Divide and

Conquer
Array O(nlogn) O(nlogn) O(nlogn) O(n) auxiliary Yes Yes

Radix Sort

k : range of data

elements

Non

Comparison

Based

Array,
Queue

O(kN) O(kN) O(kN) O(n+ k) No No

Counting Sort

k : range of data

elements

Non

Comparison

Based

Array
O(n+k) ≈

O(n)
O(n+k) ≈

O(n)
O(n+k) ≈

O(n)
O(n+k) Yes No

Heap Sort Array, Tree O(nlogn) O(nlogn) O(nlogn) O(1) auxiliary NO Yes

Bucket Sort
k : number of

buckets

Non
Comparison

Based

Array O(n+k) O(n+k) O(n2) O(n.k) Yes No

Table 2: ADVANTAGES AND DISADVANTAGES [9, 10]

Technique

Advantage

Disadvantage

Bubble Sort

-Simple and easy for

implementation

-efficient when input data is
sorted

-Inefficient for large

volume of input data

Selection Sort
-efficient for small amount

of input data.

-perform all n

comparisons for
sorted input data

-Inefficient for large

volume of input data

Enhanced Selection -number of exchanges are

Sort less compare to Selection
Sort

Insertion sort
-Simple and efficient for

small input data

-Inefficient for large

volume of input data

Merge Sort
-Efficient for less amount of

input data

-Requires extra

memory for sorting

Quick sort
-Fast and Efficient for large

amount of input data

-Inefficient for sorted

input data

MQ sort
(Combination of

Merge and Quick

Sort)

-Extra memory is not

required

Radix Sort

-efficiency not depended on

type and size of data

-efficiently handle large
amount of input data

-Occupy more

memory

Counting Sort -Uses key values as a -Inefficient for large

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume VI, Issue VI, June 2017 | ISSN 2278-2540

www.ijltemas.in Page 41

k : range of data

elements

indexes amount of data

-Inefficient for string

data

Heap Sort
-use tree structure to

represent elements

-Slower because it
builds tree structure

for sorting

Bucket Sort

k : number of
buckets

-Efficient whenever input is

uniformly distributed over
range.

-Inefficient for large
amount of data

-Requires more

memory space

IV. APPLICATIONS OF SORTING TECHNIQUES

Sorted data is suitable for searching of any information or data

by applying binary search algorithm. Most of the commercial

organizations like government organizations, academic

institutes, financial institutes, health care sectors requires

information’s in sorted order. Here the information’s are sorted

by numerical field or text field, files are arranged by name or

date, transactions are managed by time or place, mail/letter to be

sorted by date or address, students data to be sorted by result or

id number or name so whatever the field the data must be

require some sorting mechanism.[1,3]

A. Searching

Searching is the basic step in most of the applications of the

computer science. Binary search is most efficient whenever we

have large amount of input data. The input data must be in

sorted sequence in case of binary search. So one of the most

common application of sorting is searching process.

B. Kruskal’s Algorithm

Kruskal’s algorithm is used to generate Minimum Spanning

Tree (MST) from the given graph. The first step of this

algorithm is sorting according to the weights of their edges. Its

running time complexity depends on the sorting process.

C. Closest Pair Problem

In this problem we need to find pair of elements that have

smallest difference. Input elements are arrange in sorted

sequence than closest pair will present next to each other.

D. Frequency Distribution

For given input elements, which element present largest number

of times in the input sequence. So if input elements are arranged

in sorted sequence than we will easily find frequency of each

element.

There are different application areas according to different

sorting techniques. Below given table 3 shows the applications

of different sorting techniques.

Table 3: APPLICATIONS OF SORTING TECHNIQUES

Algorithm Applications

Insertion Sort

It is more suitable for small amount of input data.

Also suitable for online data sorting process. Efficient

for input data which are already sorted or 99% sorted.

Quick Sort

Compare to all other sorting algorithms quick sort is

fastest and no additional memory is required. It gives

worst case response time for the critical applications
which require guaranteed response time. Applications

such as life monitoring in medical sector, aircraft

controlling, monitoring of dangerous materials on
industrial plants etc.

Merge Sort
In most of the e-commerce applications Merge Sort is

used.

Bubble Sort Efficient for sorted input data

Insertion Sort,
Selection Sort,

Bubble Sort

Not require extra memory space for sorting process.

Quick Sort
To make excellent usage of the memory hierarchy like
virtual memory or caches.

Well suited to modern computer architectures.

Counting Sort

Counting sort is more efficient if the range of input

data is smaller (1 to k) than the number of data (1 to n)
to be sorted.

i.e. k<=n

V. CONCLUSION

This paper presents the survey and performance

characteristics of different sorting techniques along with

comparative analysis. It also presents application area and pros

& cons of different sorting techniques. The selection of the

efficient algorithm depends on the various factors of the

problem: size of the problem, memory constraint, type of the

input etc. It concludes that sorting technique is problem

specific.

REFERENCES

[1]. Ali W, Islam T, Rehman Hu, Ahmad I, Khan M, Mahmood A.

Comparison Of Different Sorting Algorithms. International Journal

of Advanced Research in Computer Science and Electronics

Engineering (IJARCSEE). 2016 Jul 28;5(7):pp-63

[2]. Renu R, Manisha M. MQ Sort an Innovative Algorithm using Quick
Sort and Merge Sort. International Journal of Computer

Applications. 2015 Jul;122(21):10-4.

[3]. Alnihoud J, Mansi R. An Enhancement of Major Sorting
Algorithms. Int. Arab J. Inf. Technol.. 2010 Jan 1;7(1):55-62.

[4]. Karunanithi AK. A Survey, Discussion and Comparison of Sorting

Algorithms. Department of Computing Science, Umea University.
2014 Jun.

[5]. Kocher G, Agrawal N. Analysis and Review of Sorting Algorithms.

IJSER. 2014 Mar.
[6]. Rajput IS, Kumar B, Singh T. Performance comparison of sequential

quick sort and parallel quick sort algorithms. International Journal of
Computer Applications. 2012 Jan 1;57(9).

[7]. Almutairi AH, Alruwaili AH, Alabdullatif A. Improving of

Quicksort Algorithm performance by sequential thread Or parallel
algorithms. Global Journal of Computer Science and Technology.

2012 Jul 16; 12(10-A).

[8]. Rajput IS, Kumar B, Singh T. Performance comparison of sequential
quick sort and parallel quick sort algorithms. International Journal of

Computer Applications. 2012 Jan 1;57(9)

[9]. Sareen P. Comparison of sorting algorithms (on the basis of average
case). International Journal of Advanced Research in Computer

Science and Software Engineering. 2013 Mar 3;3(3):522-32.

[10]. Karunanithi AK. A Survey, Discussion and Comparison of Sorting
Algorithms. Department of Computing Science, Umea University.

June 2014.

