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Abstract — In this paper transformation formulae for poly-basic 

hypergeometric functions have been used by making use of 

Bailey’s transform.  
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I. INTRODUCTION 

he well-known Bailey’s transformation states that, if   
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where              are any functions of r only, and that the 

series for    exists, then, subject to convergence, 
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Bailey’s transform (1.3) has been exploited, both as a tool to 

find new transformations of both ordinary and basic, 

hypergeometric series and also to find new q-identities of 

Rogers-Ramanujam type. We shall make use of the following 

summation in our analysis. 
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II. NOTATIONS AND DEFINITIONS 

     A basic hypergeometric series is generally defined to be a 

series of the type 


0n

   
  where        ⁄  is a rational 

function of      being fixed complex parameters called the 

base of the series, usually with modulus less than one. An 

explicit representation of such series is given by: 
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With the q-shifted factorial defined by  
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 For the convergence of the series (2.1) we need | |    and  

 | |     when        or max.  {| |      | |}    When 

     provided no zeros appear in the denominator. 
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 means that the series runs  

 

From 0 to N only  
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The poly-basic hypergeometric series is defined as: 
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III. MAIN RESULTS 

Taking         and  
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  in (1.2) we get  
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Putting these values in (1.1) (1.2) and (1.3) we get the new 

form of the Bailey’s transform as  
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We shall make use of (3.2) and (3.3) in order to establish 

certain new transformation formulae  

(a) Choosing  

                              
      

         
      

   
 

Putting these values in (3.3) we get, 
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(b) Next, taking 
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In (3.2) and making use of (1.4) we get: 
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Putting these values in (3.3) we have  
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 (c) Again, taking 
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  in (3.2)  

 

And making use of (1.6) we get, 

 

   
[    ] [    ] 
[   ] [     ⁄ ] 

 

 

Putting these values in (3.3) we obtain, 

 

       (     
 )

     (       
 )

 
55 [

     
                          ⁄

       
          ⁄

]  



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 

Volume VI, Issue VII, July 2017 | ISSN 2278-2540 

www.ijltemas.in Page 82 
 

 

✕
56  [

     
         

                        

         
         

        ⁄
]    

 

                                                                                              
 

(d) Lastly, taking 
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In (3.2) and making use of (1.7) we get, 
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Now putting these values in (3.3) we find: 
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A number of other interesting results can also be obtained by 

taking suitable values of     and   . 
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