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Abstract- This paper is concerned with inverse transient
thermoelastic problem in which we need to determine the
temperature distribution, displacement function and thermal
stresses of a semi-infinite hollow cylinder when the boundary
conditions are known. Integral transform techniques are used to
obtain the solution of the problem.
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I. INTRODUCTION

n 2003, Noda et al. [1] have published a book on Thermal

Stresses, second edition. Khobragade [2] studied
Thermoelastic analysis of a thick annular disc with radiation
conditions and Khobragade [3] discussed Thermoelastic
analysis of a thick circular plate. Pathak et al. [4] studied
Transient Thermo elastic Problems of a Circular Plate with
Heat Generation. Love [5] published a book on a treatise on
the mathematical theory of elasticity. Marchi and Zgrablich
[6] studies Vibration in hollow circular membrane with elastic
supports. Nowacki [7] discussed the state of stress in thick
circular plate due to temperature field. Wankhede [8] studied
the quasi-static thermal stresses in a circular plate.

Ganar et al. [9] discussed heat transfer and thermal stresses
of a thick circular plate. Singru et al. [10] studied thermal
stress analysis of a thin rectangular plate with internal heat
source and Singru [11] discussed thermal stresses of a semi-
infinite rectangular slab with internal heat generation.
Pakade et al. [12] studied transient thermoelastic problem
of semi- infinite circular beam with internal heat source.
Lamba et al. [13] discussed stress functions in a hollow
cylinder under heating and cooling processes. Gahane et al.
[14] studied transient thermoelastic problem of a semi-infinite
cylinder with heat sources and Gahane et al. [15] discussed
thermal stresses in a thick circular plate with internal heat
sources. Hiranwar et al. [16] studied thermoelastic problem
of a cylinder with internal heat sources. Roy et al. [17]
discussed transient thermoelastic problem of an infinite
rectangular slab. Bagade et al. [18] studied thermal stresses of
a semi infinite rectangular beam.

In this paper, we analyzed inverse thermo elastic problem of

temperature and thermal stresses of thick, semi-infinite hollow
cylinder due to heat generation. The governing heat
conduction equation has been solved by using Marchi-
Zgrablich and Fourier Cosine transform techniques. The result
presented here will be more useful in engineering
applications.

Il. STATEMENT OF THE PROBLEM

Consider a thick hollow cylinder occupying the space D: a <
r< b, 0< z< «. The material is homogeneous and isotropic.
The differential equation governing the displacement potential
function ¢ (r,z .t) as Noda et al. [1] is

0 1 0 [1+
a_f+_%+%:|:_ui|at'r (1)
orc ror oz 1-v

where, v and o; are the Poisson’s ratio and the linear
coefficient of thermal expansion of the material of the
cylinder and T is temperature of the plate satisfying the
differential equation as Noda et al. [1] is

&4_18_1—4_&4_ (r Zt)—la_T (2)
or’> ror 6221” k ot

Subject to initial condition:

T(r,z,0)=f(r,2) 3)
and boundary conditions are

oT(r,z,t
[T(nzm)ﬂag} - gi(z) @
or rea

=0,(2,t) (known) (5)

[T(r,z,t)ﬁtk2
r=¢

aT(r, z,t)}
or

[T(r.z,t)]._, =G(z,t) (unknown) (6)
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where k is the thermal diffusivity of the material of the
cylinder.

The displacement function in the cylindrical co-ordinate
system are represented by the Goodier thermoelastic function
¢ and Love’s function L as Noda et al. [1] are

u, —2_OL ©)
" or oroz

0, =% Lo )v? o 0L (10)
ooz oz7°

in which Goodier thermoelastic potential must satisfy the
equation as Nodaet al. [1] is

V2= (1+V)atT (11)
v
The Love’s function must satisfy
V2(V?L)=0 (12)
2 2
Where V2—6—2+1£ 6—2
orc ror oz

The component of stresses are represented by the use of the
potential ¢ and Love’s function L as Noda et al.[1] are

2
_ZG{L? v¢} { L—ZT'Z‘}} (13)

% _gayl, 0 vz 1L 14
agg_ze{[ = v¢}+az[ L p— }} (14)

_ o’ o |, 0 2 0L
Oy —ZG{&—Z—V ¢}+E{(2_U)V L_?} (15)

Figure Shows the Geometry of the problem

I11. SOLUTION OF THE PROBLEM

Applying finite Marchi-Zgrablich transform defined in [3]
to the equations (2) and using equations (4), (5) one obtains

62T+16T+82T (rzt)—lﬁ o
o ror oz k ot 0

By using the operational property of finite Marchi-Zgrablich
transform, we get

?T  ,= — 1aT
g_ﬂ§T+Z:IE+g(ZIt) (18)

Again, applying Fourier cosine transform to the equation (18),
we get

d'F* J— * — %
¢ +kp2Tc =+, (19)

where
;—t’l Zk)_(c and ¢1* =ku— klu TC _kgc

Equation (19) is a linear equation whose solution is given by

t
T (n,z,t)= e_kpztIAe_kpzt'dt’

2
o, = 2(;{M +—{(1— V)VAL —ﬂ} (16) , (20)
oroz  or oz° 4+ Ce kpt
Equations (1) to (16) constitute the mathematical formulation L
of the problem under consideration. Where A = (¢1 +le
Using (3), we get
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C=F"(m,n)

Thus, we have,

J— K 2t t 2., —_

T (n,z,t)=e"® _.‘Ae*kp Ydt'+F (m,n) |(21)
0

Applying inversion of Fourier cosine transform and Marchi-
Zgrablich transform to the equation (21), one obtains

T(r,z,t) :Z:i
n=1 c

n

t
e-kpzt[ j Ae AU+ F (m, n)] % So(ky, Ky, 22:F) (22)
0

t
5 4 gkt J-Ae‘kpzt'dt’ +F (m,n)
G(z,t) =nZ:1:C—n °
x So(Ky. Ky, 41b)
(23)
These are the desired solutions of the given problem.

Let us assume Love’s function L, which satisfy condition (11)
as

L(2) =Y. - ¥So(kurkon ) (24)

n=1 —Nn

where,

t
w =e W J.Ae‘kpzt'dt’ +F (m,n)
0
The displacement potential is given by
> 1
4= A;C—nwso(kl,kz,unr)[w B(1)] (25)

where,

t
A [T_Ujat B(t) = "t { j AeT®Udt + F (m, n)]dt
0

IV. DETERMINATION OF DISPLACEMENT FUNCTION

Substituting the equations (24) and (25) in the equation (8)
one obtains

u, = Azlé_:so,(kl- Ko, ttn r)['/’ + B(t)] (26)

—Zﬂ'//so (ky Kz, £151)
=1 CI"I

9] 2 0
' 1 ’
Uy =2(1-0) Y EySy (k) + D 8y S0 (ko )

n=l N n=l ~n
@7)

V. DETERMINATION OF STRESS FUNCTIONS

Substituting the values from the equation (24) and (25) in the
equation (10) to (13) we get

© 2 "
AY S0 (K ko, )y + BOY)]

n=1 —Nn

0 2 "
- AZ;‘ ’(‘:”n So (Ky, Ky, 12,1y + B(t)]-
n=

Toes keunnly+BOL |

n

oy =264 -

) 2
ﬂ "
AZ;‘ Cnn So (Ky,Ka, 42nT)
n=:

A~ up '
+—| [+— > =L wSy (K, k,, g1
p l’nzzlanO(l 21 Mnl)
2

_Z#n So (Ky,Kg, 401)
L a1 C

n

AT ’
ng_nsf’ (K, Ko, 22,0 + B(O)]

n=1 —Nn

0 2 "
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n=

A&ty !
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Ogp =2G (29)

B © 2
Hn "
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0 18
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where,

A= (“—Ujat and
1-v

t
w =g W DA e®Udt + F (m, n)}
0

B(t) =J'¢//dt

VI. SPECIAL CASE
Set F(r,z)=06(r-ry)(z—-e7%) (32)

Applying finite transform defined in Marchi Zgrablich [35] to
the equation (32) one obtains

F(n, 2) =1y (2—e7)Sp(Ky, Ky, £1T) (33)

Substituting the value of (33) in the equations (22) to (23) one
obtains

o t
T(r,z,t) = Zi g0t J.Ae‘kpzt'dt’ +F (m,n)
n=1 C” 0
x So (ke Ka, 1n1)

(34)

n=1 N

® t

G(z,t)zzci gt jAe‘kpzt'dt'+E (m,n)

0
x So(ky, Ky, £1b)

(35)

where

F"(n, m) =ty Sy (ky, Ky ﬂnro)j (z—e?)cosaz dz
0

VII. NUMERICAL RESULTS
Put a=2&=23Db=251t=1seck;=0.25=k, in
equations (34) to (35) one obtains

» 1 N
T(r,z,t):zci g 159’ jAe‘lS'ng"dt#F (m,n)
n=1 N 0

%S4(0.25,0.25, 1.1
(36)
© 1
G(z.t) = Zci e | [cﬁf + Zjekpzt’dt' +F (mn)
=l 0
x So (ke Ko, 147 (2.5))
(37)

VIII. MATERIAL PROPERTIES

The numerical calculation has been carried out for an
Aluminum (pure) circular plate with the material properties as

Density p =169 Ib/ft®

Specific heat = 0.208 Btu/lbOF

Thermal conductivity K = 15.9 x 10°Btu/(hr. ftOF)

Thermal diffusivity o = 3.33 ft%/hr.

Poisson ratio v = 0.35

Coefficient of linear thermal expansion o; = 12.84 X
10°°1/F

Lame constantp = 26.67

Young’s modulus of elasticity E = 70G Pa

IX. DIMENSIONS

The constants associated with the numerical calculation are
taken as

Radius of the disk a = 2ft
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Radius of the disk b = 2.5 ft [17]. Roy, Himanshu and Khobragade, N.W: Transient
Thermoelastic Problem Of An Infinite Rectangular Slab, Int.
Journal of Latest Trends in Maths, Vol. 2, No. 1, pp. 37-43, 2012.

X. CONCLUSION [18]. Roy H. S., Bagade S. H. and N. W. Khobragade: Thermal
. . . Stresses of a Semi infinite Rectangular Beam, JEIT vol. 3, Issue
In this paper, we develop the analysis for the temperature field 1, pp. 442-445, 2013.
by introducing the methods of the Marchi- Zgrablich and
Fourier cosine transform techniques and determined the 457
expression for temperature distribution, displacement and t=1
thermal stresses of a semi-infinite thick hollow cylinder with i =0.75
known boundary conditions which is useful to design of =05
structure or machines in engineering applications. sl t=0.25
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Fig. 9: Thermal stresses vs r
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