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Abstract- This paper is concerned with inverse transient 

thermoelastic problem in which we need to determine the 

temperature distribution, displacement function and thermal 

stresses of a semi-infinite hollow cylinder when the boundary 

conditions are known. Integral transform techniques are used to 

obtain the solution of the problem.  
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I. INTRODUCTION 

n 2003, Noda et al. [1] have published a book on Thermal 

Stresses, second edition. Khobragade [2] studied 

Thermoelastic analysis of a thick annular disc with radiation 

conditions and Khobragade [3] discussed Thermoelastic 

analysis of a thick circular plate. Pathak et al. [4] studied 

Transient Thermo elastic Problems of a Circular Plate with 

Heat Generation. Love [5] published a book on a treatise on 

the mathematical theory of elasticity. Marchi and Zgrablich 

[6] studies Vibration in hollow circular membrane with elastic 

supports. Nowacki [7] discussed the state of stress in thick 

circular plate due to temperature field. Wankhede [8] studied 

the quasi-static thermal stresses in a circular plate. 

Ganar et al. [9] discussed heat transfer and thermal stresses 

of a thick circular plate. Singru et al. [10] studied thermal 

stress analysis of a thin rectangular plate with internal heat 

source and Singru [11] discussed thermal stresses of a semi-

infinite rectangular slab with internal heat generation. 

Pakade et al. [12] studied transient thermoelastic problem 

of semi- infinite circular beam with internal heat source.  

Lamba et al. [13] discussed stress functions in a hollow 

cylinder under heating and cooling processes.  Gahane et al. 

[14] studied transient thermoelastic problem of a semi-infinite 

cylinder with heat sources and Gahane et al. [15] discussed 

thermal stresses in a thick circular plate with internal heat 

sources.  Hiranwar et al. [16] studied thermoelastic problem 

of a cylinder with internal heat sources.  Roy et al. [17] 

discussed transient thermoelastic problem of an infinite 

rectangular slab. Bagade et al. [18] studied thermal stresses of 

a semi infinite rectangular beam.  

 In this paper, we analyzed inverse thermo elastic problem of 

temperature and thermal stresses of thick, semi-infinite hollow 

cylinder due to heat generation. The governing heat 

conduction equation has been solved by using Marchi-

Zgrablich and Fourier Cosine transform techniques. The result 

presented here will be more useful in engineering 

applications. 

II. STATEMENT OF THE PROBLEM 

Consider a thick hollow cylinder occupying the space D: a  

r b,  0 z< ∞. The material is homogeneous and isotropic. 

The differential equation governing the displacement potential 

function   (r ,z ,t) as Noda et al. [1] is  
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where,   and t  are the Poisson’s ratio and the linear 

coefficient of thermal expansion of the material of the 

cylinder and T is temperature of the plate satisfying the 

differential equation as Noda et al. [1] is 
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Subject to initial condition: 
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where k is the thermal diffusivity of the material of the 

cylinder.  

The displacement function in the cylindrical co-ordinate 

system are represented by the Goodier thermoelastic function 

  and Love’s function L as Noda et al. [1] are 
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in which Goodier thermoelastic potential must satisfy the 

equation as  Noda et al. [1] is 
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The Love’s function must satisfy 
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The component of stresses are represented by the use of the 

potential 
 
and Love’s function L as  Noda et al.[1] are 
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Equations (1) to (16) constitute the mathematical formulation 

of the problem under consideration. 

 

Figure Shows the Geometry of the problem 

III. SOLUTION OF THE PROBLEM 

Applying finite Marchi-Zgrablich transform defined in [3] 

to the equations (2) and using equations (4), (5) one obtains  

t

T

k
tzr

z

T

r

T

rr

T


















 1
),,(

1
2

2

2

2

              (17)                                 

By using the operational property of finite Marchi-Zgrablich 

transform, we get 
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Again, applying Fourier cosine transform to the equation (18), 

we get 
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Equation (19) is a linear equation whose solution is given by 

tkp

tkp

t

tkp

Ce

tdeetznT

2

22

0

*
),,(







 

    

     (20) 

Where 






 
*

1
*
1   

Using (3), we get 



International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) 

Volume VI, Issue VIII, August 2017 | ISSN 2278-2540 

 

www.ijltemas.in Page 3 
 

),(* nmFC 
 

Thus, we have, 
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Applying inversion of Fourier cosine transform and Marchi-

Zgrablich transform to the equation (21),  one obtains 
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These are the desired solutions of the given problem. 

Let us assume Love’s function L, which satisfy condition (11) 

as 
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The displacement potential  is given by 
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where, 

tA 

















1

1
dtnmFtdeetB tkp

t

tkp


















 ),()(
*

0

22

 

IV. DETERMINATION OF DISPLACEMENT FUNCTION 

Substituting the equations (24) and (25) in the equation (8) 

one obtains 
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V.  DETERMINATION OF STRESS FUNCTIONS 

Substituting the values from the equation (24) and (25) in the 

equation (10) to (13) we get 
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where, 
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VI. SPECIAL CASE 

Set ))((),( 0
zezrrzrF                                (32) 

Applying finite transform defined in Marchi Zgrablich [35] to 

the equation (32) one obtains 
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Substituting the value of (33) in the equations (22) to (23) one 

obtains 
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VII. NUMERICAL RESULTS 

Put 21 25.0sec,1,5.2,3.2,2 kktba  
, 

in 

equations (34) to (35) one obtains 
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VIII. MATERIAL PROPERTIES 

The numerical calculation has been carried out for an 

Aluminum (pure) circular plate with the material properties as  

Density ρ =169 lb/ft
 3
 

Specific heat = 0.208  Btu/lbOF 

Thermal conductivity K = 15.9 x 10
6
Btu/(hr. ftOF) 

Thermal diffusivity α = 3.33  ft
2
/hr. 

Poisson ratio ν = 0.35 

Coefficient of linear thermal expansion αt  = 12.84 x  

                                                                         10
- 6

1/F 

Lame constantµ  = 26.67 

Young’s modulus of elasticity E = 70G Pa  

IX. DIMENSIONS 

The constants associated with the numerical calculation  are 

taken as  

Radius of the disk a = 2ft 
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Radius of the disk b = 2.5 ft 

X. CONCLUSION 

In this paper, we develop the analysis for the temperature field 

by introducing the methods of the Marchi- Zgrablich and 

Fourier cosine transform techniques and determined the 

expression for temperature distribution, displacement and 

thermal stresses of a semi-infinite thick hollow cylinder with 

known boundary conditions which is useful to design of 

structure or machines in engineering applications. 
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Fig. 1: Temperature distribution vs r 

 

Fig. 2:  Unknown Temperature gradient vs r 

 

Fig. 3: Displacement function vs r 
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Fig. 4: Displacement component vs r 

 

Fig. 5: Displacement component vs r 

 

Fig. 6: Thermal stresses vs r 

 

Fig. 7: Thermal stresses vs r 

 

Fig. 8: Thermal stresses vs r 

 

Fig. 9: Thermal stresses vs r 
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