Inverse Transient Thermoelastic Problem of SemiInfinite Thick Hollow Cylinder

Shalu D Barai ${ }^{1}$, M. S. Warbhe ${ }^{2}$ and N. W. Khobragade ${ }^{3}$
${ }^{I}$ Department of Mathematics, Gondwana University, Gadchiroli, (M.S), India
${ }^{2}$ Department of Mathematics, Sarvodaya Mahavidyalaya Sindewahi, (M.S), India
${ }^{3}$ Department of Mathematics, RTM Nagpur University, Nagpur (M.S), India.

Abstract

This paper is concerned with inverse transient thermoelastic problem in which we need to determine the temperature distribution, displacement function and thermal stresses of a semi-infinite hollow cylinder when the boundary conditions are known. Integral transform techniques are used to obtain the solution of the problem.

Key Words: Semi-infinite hollow cylinder, transient problem, Integral transform, internal heat source, inverse problem

I. INTRODUCTION

In 2003, Noda et al. [1] have published a book on Thermal Stresses, second edition. Khobragade [2] studied Thermoelastic analysis of a thick annular disc with radiation conditions and Khobragade [3] discussed Thermoelastic analysis of a thick circular plate. Pathak et al. [4] studied Transient Thermo elastic Problems of a Circular Plate with Heat Generation. Love [5] published a book on a treatise on the mathematical theory of elasticity. Marchi and Zgrablich [6] studies Vibration in hollow circular membrane with elastic supports. Nowacki [7] discussed the state of stress in thick circular plate due to temperature field. Wankhede [8] studied the quasi-static thermal stresses in a circular plate.

Ganar et al. [9] discussed heat transfer and thermal stresses of a thick circular plate. Singru et al. [10] studied thermal stress analysis of a thin rectangular plate with internal heat source and Singru [11] discussed thermal stresses of a semiinfinite rectangular slab with internal heat generation. Pakade et al. [12] studied transient thermoelastic problem of semi- infinite circular beam with internal heat source. Lamba et al. [13] discussed stress functions in a hollow cylinder under heating and cooling processes. Gahane et al. [14] studied transient thermoelastic problem of a semi-infinite cylinder with heat sources and Gahane et al. [15] discussed thermal stresses in a thick circular plate with internal heat sources. Hiranwar et al. [16] studied thermoelastic problem of a cylinder with internal heat sources. Roy et al. [17] discussed transient thermoelastic problem of an infinite rectangular slab. Bagade et al. [18] studied thermal stresses of a semi infinite rectangular beam.

In this paper, we analyzed inverse thermo elastic problem of temperature and thermal stresses of thick, semi-infinite hollow cylinder due to heat generation. The governing heat conduction equation has been solved by using MarchiZgrablich and Fourier Cosine transform techniques. The result presented here will be more useful in engineering applications.

II. STATEMENT OF THE PROBLEM

Consider a thick hollow cylinder occupying the space D: $a \leq$ $\mathrm{r} \leq b, \quad 0 \leq \mathrm{z}<\infty$. The material is homogeneous and isotropic. The differential equation governing the displacement potential function $\phi(\mathrm{r}, \mathrm{z}, \mathrm{t})$ as Noda et al. [1] is
$\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{\partial^{2} \phi}{\partial z^{2}}=\left[\frac{1+v}{1-v}\right] \alpha_{t} T$
where, v and α_{t} are the Poisson's ratio and the linear coefficient of thermal expansion of the material of the cylinder and T is temperature of the plate satisfying the differential equation as Noda et al. [1] is
$\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{\partial^{2} T}{\partial z^{2}}+\chi(r, z, t)=\frac{1}{k} \frac{\partial T}{\partial t}$
Subject to initial condition:
$T(r, z, 0)=f(r, z)$
and boundary conditions are
$\left[T(r, z, t)+k_{1} \frac{\partial T(r, z, t)}{\partial r}\right]_{r=a}=g_{1}(z, t)$
$\left[T(r, z, t)+k_{2} \frac{\partial T(r, z, t)}{\partial r}\right]_{r=\xi}=g_{2}(z, t)($ known $)$
$[T(r, z, t)]_{r=b}=G(z, t) \quad$ (unknown)

$$
\begin{align*}
& {\left[\frac{\partial T(r, z, t)}{\partial z}\right]_{z=0}=f_{1}(r, t)} \tag{7}\\
& {\left[\frac{\partial T(r, z, t)}{\partial z}\right]_{z=\infty}=f_{2}(r, t) \quad, 0 \leq r \leq a, t>0} \tag{8}
\end{align*}
$$

where k is the thermal diffusivity of the material of the cylinder.
The displacement function in the cylindrical co-ordinate system are represented by the Goodier thermoelastic function ϕ and Love's function L as Noda et al. [1] are
$u_{r}=\frac{\partial \phi}{\partial r}-\frac{\partial^{2} L}{\partial r \partial z}$
$u_{z}=\frac{\partial \phi}{\partial z}+2(1-v) \nabla^{2} L-\frac{\partial^{2} L}{\partial z^{2}}$
in which Goodier thermoelastic potential must satisfy the equation as Noda et al. [1] is
$\nabla^{2} \phi=\left(\frac{1+v}{1-v}\right) a_{t} T$
The Love's function must satisfy
$\nabla^{2}\left(\nabla^{2} L\right)=0$
Where $\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial z^{2}}$
The component of stresses are represented by the use of the potential ϕ and Love's function L as Noda et al.[1] are
$\sigma_{r r}=2 G\left\{\left[\frac{\partial^{2} \phi}{\partial r^{2}}-\nabla^{2} \phi\right]+\frac{\partial}{\partial z}\left[u \nabla^{2} L-\frac{\partial^{2} L}{\partial r^{2}}\right]\right\}$
$\sigma_{\theta \theta}=2 G\left\{\left[\frac{1}{r} \frac{\partial \phi}{\partial r}-\nabla^{2} \phi\right]+\frac{\partial}{\partial z}\left[\nu \nabla^{2} L-\frac{1}{r} \frac{\partial^{2} L}{\partial r^{2}}\right]\right\}$
$\sigma_{z z}=2 G\left\{\left[\frac{\partial^{2} \phi}{\partial z^{2}}-\nabla^{2} \phi\right]+\frac{\partial}{\partial z}\left[(2-v) \nabla^{2} L-\frac{\partial^{2} L}{\partial z^{2}}\right]\right\}$
$\sigma_{r z}=2 G\left\{\frac{\partial^{2} \phi}{\partial r \partial z}+\frac{\partial}{\partial r}\left[(1-v) \nabla^{2} L-\frac{\partial^{2} L}{\partial z^{2}}\right]\right\}$
Equations (1) to (16) constitute the mathematical formulation of the problem under consideration.

Figure Shows the Geometry of the problem

III. SOLUTION OF THE PROBLEM

Applying finite Marchi-Zgrablich transform defined in [3] to the equations (2) and using equations (4), (5) one obtains

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{\partial^{2} T}{\partial z^{2}}+\chi(r, z, t)=\frac{1}{k} \frac{\partial T}{\partial t} \tag{17}
\end{equation*}
$$

By using the operational property of finite Marchi-Zgrablich transform, we get

$$
\begin{equation*}
\frac{\partial^{2} \bar{T}}{\partial z^{2}}-\mu_{n}^{2} \bar{T}+\bar{\chi}=\frac{1}{k} \frac{\partial \bar{T}}{\partial t}+g(z, t) \tag{18}
\end{equation*}
$$

Again, applying Fourier cosine transform to the equation (18), we get

$$
\begin{equation*}
\frac{d \bar{T}_{c}^{*}}{d t}+k p^{2} \bar{T}_{c}^{*}=\phi_{1}^{*}+\bar{\chi}_{1}^{*} \tag{19}
\end{equation*}
$$

where
$\bar{\chi}_{1}^{*}=k \bar{\chi}_{c}^{*} \quad$ and $\phi_{1}^{*}=k \mu-k \mu_{n}^{2} \bar{T}_{c}^{*}-k g_{c}^{*}$
Equation (19) is a linear equation whose solution is given by

$$
\begin{align*}
\bar{T}^{*}(n, z, t)= & e^{-k p^{2} t} \int_{0}^{t} \Lambda e^{-k p^{2} t^{\prime}} d t^{\prime} \tag{20}\\
& +C e^{-k p^{2} t}
\end{align*}
$$

Where $\Lambda=\left(\phi_{1}^{*}+\bar{\chi}_{1}^{*}\right)$
Using (3), we get
$C=F^{*}(m, n)$
Thus, we have,
$\bar{T}^{*}(n, z, t)=e^{-k p^{2} t}\left[\int_{0}^{t} \Lambda e^{-k p^{2} t^{\prime}} d t^{\prime}+\bar{F}^{*}(m, n)\right]$
Applying inversion of Fourier cosine transform and MarchiZgrablich transform to the equation (21), one obtains

$$
T(r, z, t)=\sum_{n=1}^{\infty} \frac{1}{C_{n}}
$$

$$
\begin{equation*}
\left\{e^{-k p^{2} t}\left[\int_{0}^{t} \Lambda e^{-k p^{2} t^{\prime}} d t^{\prime}+\bar{F}^{*}(m, n)\right]\right\} \times S_{0}\left(k_{1}, k_{2}, \mu_{n} r\right) \tag{22}
\end{equation*}
$$

$$
\begin{align*}
G(z, t)=\sum_{n=1}^{\infty} \frac{1}{C_{n}} & \left\{e^{-k p^{2} t}\left[\int_{0}^{t} \Lambda e^{-k p^{2} t^{\prime}} d t^{\prime}+\bar{F}^{*}(m, n)\right]\right\} \tag{23}\\
& \times S_{0}\left(k_{1}, k_{2}, \mu_{n} b\right)
\end{align*}
$$

These are the desired solutions of the given problem.
Let us assume Love's function L, which satisfy condition (11) as
$L(r, z)=\sum_{n=1}^{\infty} \frac{1}{C_{n}} \psi S_{0}\left(k_{1}, k_{2}, \mu_{n} r\right)$
where,
$\psi=e^{-k p^{2} t}\left[\int_{0}^{t} \Lambda e^{-k p^{2} t^{\prime}} d t^{\prime}+\bar{F}^{*}(m, n)\right]$
The displacement potential is given by

$$
\begin{equation*}
\phi=A \sum_{n=1}^{\infty} \frac{1}{C_{n}} \psi S_{0}\left(k_{1}, k_{2}, \mu_{n} r\right)[\psi+B(t)] \tag{25}
\end{equation*}
$$

where,
$A=\left(\frac{1+v}{1-v}\right) \alpha_{t} B(t)=e^{-k p^{2} t}\left[\int_{0}^{t} \Lambda e^{-k p^{2} t^{\prime}} d t^{\prime}+\bar{F}^{*}(m, n)\right] d t$

IV. DETERMINATION OF DISPLACEMENT FUNCTION

Substituting the equations (24) and (25) in the equation (8) one obtains

$$
\begin{align*}
u_{r}= & A \sum_{n=1}^{\infty} \frac{\mu_{n}}{C_{n}} S_{0}{ }^{\prime}\left(k_{1}, k_{2}, \mu_{n} r\right)[\psi+B(t)] \tag{26}\\
& -\sum_{n=1}^{\infty} \frac{\mu_{n}}{C_{n}} \psi S_{0}{ }^{\prime}\left(k_{1}, k_{2}, \mu_{n} r\right) \\
u_{z}= & 2(1-v)\left[\sum_{n=1}^{\infty} \frac{\mu_{n}{ }^{2}}{C_{n}} \psi S_{0}{ }^{\prime}\left(k_{1}, k_{2}, \mu_{n} r\right)+\frac{1}{r} \sum_{n=1}^{\infty} \frac{\mu_{n}}{C_{n}} \psi S_{0}{ }^{\prime}\left(k_{1}, k_{2}, \mu_{n} r\right)\right]
\end{align*}
$$

V. DETERMINATION OF STRESS FUNCTIONS

Substituting the values from the equation (24) and (25) in the equation (10) to (13) we get

$$
\sigma_{\theta \theta}=2 G\left\{\begin{array}{l}
\frac{A}{r} \sum_{n=1}^{\infty} \frac{\mu_{n}}{C_{n}} S_{0}{ }^{\prime}\left(k_{1}, k_{2}, \mu_{n} r\right)[\psi+B(t)] \tag{29}\\
{\left[\begin{array}{l}
A \sum_{n=1}^{\infty} \frac{\mu_{n}{ }^{2}}{C_{n}} S_{0}{ }^{\prime \prime}\left(k_{1}, k_{2}, \mu_{n} r\right)[\psi+B(t)]+ \\
\frac{A}{r} \sum_{n=1}^{\infty} \frac{\mu_{n}}{C_{n}} S_{0}{ }^{\prime}\left(k_{1}, k_{2}, \mu_{n} r\right)[\psi+B(t)]
\end{array}\right]} \\
\left.+\frac{\partial}{\partial z}\left[\begin{array}{c}
{\left[\begin{array}{l}
A \sum_{n=1}^{\infty} \frac{\mu_{n}{ }^{2}}{C_{n}} \psi S_{0}{ }^{\prime \prime}\left(k_{1}, k_{2}, \mu_{n} r\right) \\
+\frac{1}{r} \sum_{n=1}^{\infty} \frac{\mu_{n}}{C_{n}} \psi S_{0}{ }^{\prime}\left(k_{1}, k_{2}, \mu_{n} r\right) \\
-\frac{1}{r} \sum_{n=1}^{\infty} \frac{\mu_{n}{ }^{2}}{C_{n}} \psi S_{0}{ }^{\prime \prime}\left(k_{1}, k_{2}, \mu_{n} r\right)
\end{array}\right]}
\end{array}\right\} .\right\} .
\end{array}\right.
$$

$$
\left.\begin{array}{rl}
& {\left[\begin{array}{l}
{\left[\begin{array}{l}
A \sum_{n=1}^{\infty} \frac{\mu_{n}{ }^{2}}{C_{n}} S_{0}^{\prime \prime}\left(k_{1}, k_{2}, \mu_{n} r\right)[\psi+B(t)] \\
+\frac{A}{r} \sum_{n=1}^{\infty} \frac{\mu_{n}}{C_{n}} S_{0}^{\prime}\left(k_{1}, k_{2}, \mu_{n} r\right)[\psi+B(t)]
\end{array}\right]} \\
+(1-v) \sum_{n=1}^{\infty} \frac{\mu_{n}{ }^{2}}{C_{n}} \psi S_{0}^{\prime \prime}\left(k_{1}, k_{2}, \mu_{n} r\right) \\
+\frac{(1-v)}{r} \sum_{n=1}^{\infty} \frac{\mu_{n}}{C_{n}} \psi S_{0}^{\prime}\left(k_{1}, k_{2}, \mu_{n} r\right)
\end{array}\right\}} \\
\sigma_{r z}= & 2 G\left[(1-v) \sum_{n=1}^{\infty} \frac{\mu_{n}^{3}}{C_{n}} \psi S_{0}^{\prime \prime \prime}\left(k_{1}, k_{2}, \mu_{n} r\right)\right.
\end{array}\right\}
$$

where,

$$
\begin{aligned}
& A=\left(\frac{1+v}{1-v}\right) \alpha_{t} \text { and } \\
& \psi=e^{-k p^{2} t}\left[\int_{0}^{t} \Lambda e^{k p^{2} t^{\prime}} d t^{\prime}+\bar{F}^{*}(m, n)\right]
\end{aligned}
$$

$$
B(t)=\int \psi d t
$$

VI. SPECIAL CASE

Set $F(r, z)=\delta\left(r-r_{0}\right)\left(z-e^{-z}\right)$
Applying finite transform defined in Marchi Zgrablich [35] to the equation (32) one obtains

$$
\begin{equation*}
\bar{F}(n, z)=r_{0}\left(z-e^{-z}\right) S_{0}\left(k_{1}, k_{2}, \mu_{n} r_{0}\right) \tag{33}
\end{equation*}
$$

Substituting the value of (33) in the equations (22) to (23) one obtains

$$
\begin{aligned}
T(r, z, t) & =\sum_{n=1}^{\infty} \frac{1}{C_{n}}\left\{e^{-k p^{2} t}\left[\int_{0}^{t} \Lambda e^{-k p^{2} t^{\prime}} d t^{\prime}+\bar{F}^{*}(m, n)\right]\right\} \\
& \times S_{0}\left(k_{1}, k_{2}, \mu_{n} r\right)
\end{aligned}
$$

$$
\begin{aligned}
G(z, t)= & \sum_{n=1}^{\infty} \frac{1}{C_{n}}\left\{e^{-k p^{2} t}\left[\int_{0}^{t} \Lambda e^{-k p^{2} t^{\prime}} d t^{\prime}+\bar{F}^{*}(m, n)\right]\right\} \\
& \times S_{0}\left(k_{1}, k_{2}, \mu_{n} b\right)
\end{aligned}
$$

where

$$
\bar{F}^{*}(n, m)=r_{0} S_{0}\left(k_{1}, k_{2}, \mu_{n} r_{0}\right) \int_{0}^{\infty}\left(z-e^{-z}\right) \cos \alpha z d z
$$

VII. NUMERICAL RESULTS

Put $\quad a=2, \xi=2.3, b=2.5, t=1 \mathrm{sec}, k_{1}=0.25=k_{2}, \quad$ in equations (34) to (35) one obtains

$$
\begin{align*}
T(r, z, t)= & \sum_{n=1}^{\infty} \frac{1}{C_{n}}\left\{e^{-15.9 p^{2}}\left[\int_{0}^{1} \Lambda e^{-15.9 p^{2} t^{\prime}} d t^{\prime}+\bar{F}^{*}(m, n)\right]\right\} \\
& \times S_{0}\left(0.25,0.25, \mu_{n} r\right) \tag{36}
\end{align*}
$$

$$
G(z, t)=\sum_{n=1}^{\infty} \frac{1}{C_{n}}\left\{e^{-k p^{2}}\left[\int_{0}^{1}\left(\phi_{1}^{*}+\bar{\chi}_{1}^{*}\right) e^{-k p^{2} t^{\prime}} d t^{\prime}+\bar{F}^{*}(m, n)\right]\right\}
$$

$$
\times S_{0}\left(k_{1}, k_{2}, \mu_{n}(2.5)\right)
$$

VIII. MATERIAL PROPERTIES

The numerical calculation has been carried out for an Aluminum (pure) circular plate with the material properties as

Density $\rho=169 \mathrm{lb} / \mathrm{ft}^{3}$
Specific heat $=0.208 \mathrm{Btu} / \mathrm{lbOF}$
Thermal conductivity $\mathrm{K}=15.9 \times 10^{6} \mathrm{Btu} /(\mathrm{hr}$. ftOF)
Thermal diffusivity $\alpha=3.33 \mathrm{ft}^{2} / \mathrm{hr}$.
Poisson ratio $v=0.35$
Coefficient of linear thermal expansion $\alpha_{t}=12.84 \mathrm{x}$ $10^{-6} 1 / \mathrm{F}$
Lame constant $\mu=26.67$
Young's modulus of elasticity $\mathrm{E}=70 \mathrm{G} \mathrm{Pa}$

IX. DIMENSIONS

The constants associated with the numerical calculation are taken as
Radius of the disk $a=2 \mathrm{ft}$

Radius of the disk $\mathrm{b}=2.5 \mathrm{ft}$

X. CONCLUSION

In this paper, we develop the analysis for the temperature field by introducing the methods of the Marchi- Zgrablich and Fourier cosine transform techniques and determined the expression for temperature distribution, displacement and thermal stresses of a semi-infinite thick hollow cylinder with known boundary conditions which is useful to design of structure or machines in engineering applications.

REFERENCES

[1]. Noda N; Hetnarski R B; Tanigawa Y: Thermal Stresses, second edition Taylor \& Francis, New York, 2003.
[2]. Khobragade N W: Thermoelastic analysis of a thick annular disc with radiation conditions, Int. J. of Engg. And Innovative Technology, vol. 3, Issue 5, pp. 120-127, 2013.
[3]. Khobragade $\mathbf{N} \mathbf{W}$: Thermoelastic analysis of a thick circular plate, IJEIT, vol. 3, Issue 5, pp.94-100, 2013.
[4]. Khobragade N W; Khalsa L H; Gahane T T and Pathak A C: Transient Thermo elastic Problems of a Circular Plate with Heat Generation, IJEIT vol.3, pp. 361-367, 2013
[5]. Love A E H: A treatise on the mathematical theory of elasticity, Dover publication, Inc, New York, 1964.
[6]. Marchi E and Zgrablich G: Vibration in hollow circular membrane with elastic supports, Bulletin of the Calcutta Mathematical Society, Vol. 22(1), pp. 73-76, 1964.
[7]. Nowacki W: The state of stress in thick circular plate due to temperature field. Ball. Sci. Acad. Palon Sci. Tech 5, 1957.
[8]. Wankhede P C: On the quasi-static thermal stresses in a circular plate. Indian J. Pure and Application Maths, 13, No. 11, 12731277, 1982
[9]. Ganar Ritesh and N. W. Khobragade: Heat transfer and Thermal Stresses of a Thick Circular Plate. IJEIT Volume 4, Issue 8, pp. 203-207, 2015.
[10]. Singru, S. S. and Khobragade, N. W: Thermal Stress Analysis of a Thin Rectangular Plate With Internal Heat Source, International Journal of Latest Technology in Engineering, Management \& Applied Science, Volume VI, Issue III, pp. 31-33, March 2017
[11]. Singru, S. S and Khobragade, N. W: Thermal Stresses of a Semi-Infinite Rectangular Slab with Internal Heat Generation, International Journal of Latest Technology in Engineering, Management \& Applied Science, Volume VI, Issue III, pp. 2628,March 2017
[12]. Pakade, R. N and Khobragade, N. W: Transient Thermoelastic Problem of Semi- Infinite Circular Beam with Internal Heat Source, International Journal of Latest Technology in Engineering, Management \& Applied Science, Volume VI, Issue VI, pp. 47-53, June 2017
[13]. Lamba, N.K, Walde, R. T and Khobragade, N.W: Stress functions in a hollow cylinder under heating and cooling processes, Journal of Statistics and Mathematics. Vol. 3, Issue 3, pp. 118-124, 2012
[14]. Gahane, T. T and Khobragade, N.W: Transient Thermoelastic Problem Of A Semi-infinite Cylinder With Heat Sources, Journal of Statistics and Mathematics, Vol. 3, Issue 2, pp. 87-93, 2012
[15]. Gahane, T. T, Khalsa, L H and Khobragade, N.W (2012): Thermal Stresses in A Thick Circular Plate With Internal Heat Sources, Journal of Statistics and Mathematics, Vol. 3, Issue 2, pp. 94-98, 2012
[16]. Hiranwar Payal C and Khobragade, N.W: Thermoelastic Problem Of A Cylinder With Internal Heat Sources, Journal of Statistics and Mathematics, Vol. 3, Issue 2, pp. 87-93, 2012
[17]. Roy, Himanshu and Khobragade, N.W: Transient Thermoelastic Problem Of An Infinite Rectangular Slab, Int. Journal of Latest Trends in Maths, Vol. 2, No. 1, pp. 37-43, 2012.
[18]. Roy H. S., Bagade S. H. and N. W. Khobragade: Thermal Stresses of a Semi infinite Rectangular Beam, IJEIT vol. 3, Issue 1, pp. 442-445, 2013.

Fig. 1: Temperature distribution vs r

Fig. 2: Unknown Temperature gradient vs r

Fig. 3: Displacement function vs r

International Journal of Latest Technology in Engineering, Management \& Applied Science (IJLTEMAS) Volume VI, Issue VIII, August 2017 | ISSN 2278-2540

Fig. 4: Displacement component vs r

Fig. 5: Displacement component vs r

Fig. 6: Thermal stresses vs r

Fig. 7: Thermal stresses vs r

Fig. 8: Thermal stresses vs r

Fig. 9: Thermal stresses vs r

