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Abstract— Mutation Testing is a white-box, unit testing tech-

nique widely used for the software quality assurance. This tech-

nique athough powerful, but is computationally expensive and 

this expense has barred mutation testing from becoming a popu-

lar software testing technique. However the recent engineering 

advancements have provided us with a number of ways for re-

ducing the cost of  mutation testing. There are a number of fac-

tors that are making mutation testing an expensive technique, 

one is high computational cost involved due to execution of large 

number of generated mutants, second being the huge amount of 

human effort involved for checking the output of mutant pro-

gram with original one and for manually detecting the equivalent 

mutants. In this paper we have tried to closely review and ana-

lyze  nature propelled meta-heuristic available techniques like 

ABC, PSO, PeSO  for reducing the cost of mutation testing so 

that we can come up with a feasible and efficient cost reduction 

technique in mutation testing. 

Index Terms— Computational cost, Cost reduction, Equivalent 

mutants, Mutation testing, Nature propelled techniques -ABC, 

PeSO, PSO. 

I. INTRODUCTION 

utation testing is a fault based, white – box unit testing 

technique that generally involves changing pieces of 

code to see if the test cases detect these changes and fails. It is 

a technique for testing software units that has great potential 

for improving the quality of testing, and thereby increasing 

the ability to assure the high reliability of critical software. 

The history of mutation testing can be traced back to 1971 in a 

student Richard Lipton„s paper. He gave this idea in his term 

paper titled “Fault Diagnosis of Computer Program” [1]. But 

there were many issues related to the feasibility of using it for 

practical applications.  Later on in late 1970‟s major work was 

published on this subject [2] and then finally DeMillo et al. 

[4] and Hamlet [3] formally introduced mutation as a testing 

technique in their papers. Recent advances in mutation re-

search have brought a practical mutation testing system closer 

to reality. 

Testing aims to find as many of the faults in a program as pos-

sible by executing it with a variety of inputs and conditions so 

as to reveal errors. Each set of inputs and conditions used in 

testing is known as a test case and a collection of test cases is 

called a test suite [5]. Successful test data generation finds 

faults in the program under test with as few test cases as pos-

sible. The tester deliberates all conceivable input spaces when 

selecting test cases for the software which is under test [6]. Be 

that as it may, considering all inputs is unimaginable in nu-

merous real-world applications due to time and asset impera-

tives. Henceforth, the part of test configuration methods is 

exceptionally imperative. A test plan strategy is utilized to 

deliberately select test cases through a particular inspecting 

mechanism [7]. This process optimizes the quantity of test 

cases to acquire an optimum test suite, in this way wiping out 

the time and cost of the testing stage in software advance-

ment. 

Traditional test outline systems are valuable for deficiency 

disclosure and anticipation. Nonetheless, such strategies can't 

recognize deficiencies that are brought on by the arrange-

ments of input parts and configurations [8].  

Considering all combinations or arrangements prompts com-

prehensive testing, which is impossible due to time and asset 

requirements [9]. Thus, finding an optimum arrangement of 

test cases can be a troublesome task, and finding a unified 

process that creates optimum results is challenging [10-111]. 

Three methodologies, specifically, computational calculations, 

mathematical development, and nature- metaheuristic tech-

niques, can be utilized to tackle this issue effectively and lo-

cate a close optimal arrangement [12].Utilizing nature-

propelled meta-heuristic calculations can produce more profi-

cient results than other methodologies. This methodology is 

more adaptable than others since it can build test case genera-

tion for mutation testing with various data variables and lev-

els. Subsequently, its result is more pertinent on the grounds 

that most practical systems have diverse input components 

and levels [13]. Strategies that have been utilized for ideal test 

case generation from the cases incorporate simulated anneal-

ing (SA) [14], genetic algorithm (GA) [15], ant colony algo-

rithm (ACA) [16], and particle swarm optimization (PSO) 

[17]. We found the following techniques: Artificial Bee Colo-

ny (ABC) algorithm and Penguins Search Optimization (Pe-

SO) algorithm, Particle Swam Optimization (PSO) algorithm 

and Genetic Algorithm (GA) to be more suitable. 

II. NATURE PROPELLED TECHNIQUES FOR MUTA-

TION   TESTING 

Utilizing nature propelled meta-heuristic techniques can pro-
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duce more perfect results than other techniques. Here we are 

discussing such techniques artificial bee colony (ABC) algo-

rithm, Search Optimization (PeSO) algorithm, Particle Swam 

Optimization (PSO) algorithm and Genetic Algorithm (GA)   

A. Artificial Bee Colony Algorithm 

An innovative swarm intelligence based optimizer is the arti-

ficial bee colony (ABC) algorithm. It mimics the obliging 

foraging actions of a swarm of honey bees. In ABC algorithm, 

artificial bees are categorized into three sets: employed bees, 

onlooker bees and the scout bees.  Employed bee exploits a 

food source. The employed bees share information with the 

onlooker bees, which is waiting in the hive and the employed 

bees dances are observed by them. With probability propor-

tional to the quality of that food source the onlooker bees will 

then select a food source. Thus, than the bad ones more bees 

are attracted by good food sources. Arbitrarily in the vicinity 

of the hive scout bees search for new food sources. When a 

food source is originated by a scout or onlooker bee, it con-

verts employed. All the employed bees connected with the 

food source will abandon the position, when a food source has 

been completely abused and may become scouts again. Thus, 

the job of „„exploration‟‟ is done by scout bees, however em-

ployed and onlooker bees accomplish the job of „„exploita-

tion‟‟. In ABC, employed bees are in the first half of the colo-

ny and the onlookers are in the other half. The number of em-

ployed bees and the number of food sources (SN) are equal as 

it is assumed for each food source that there is only one em-

ployed bee. Thus, the number of onlooker bees and the num-

ber of solutions under consideration are equal. With a group 

of randomly generated food sources the ABC algorithm starts. 

The major process of ABC can be designated as follows. 

 1)  Initialization Phase: This is the initial or starting 

phase of ABC algorithm. The SN initial solutions are arbitrari-

ly created D-dimensional real vectors. 

 diiii FFFF ,2,1, ,....,,                                             (10) 

iF represent the i
th

food source, which is obtained by 

 minmaxmin

, ddddi FFrFF                            (11) 

Where is a uniform random number in the range ]1,0[  and 

min

dF and
max

dF are the lower and upper bounds for dimension 

d respectively d=1,..,D. 

 

2) Employed Bee Phase: 

In this phase, each employed bee is associated with a solution. 

She exerts a random modification on the solution (original 

food source) to find a new solution (new food source). This 

implements the function of neighborhood search. The new 

solution Vi is generated from Fi using a differential expression 

 dkdididi FFrFS ,,

'

,,                                     (12) 

Where d is arbitrarily chosen from {1,…,SN}such that ik   

and
'r is a uniform random number in the range  [-1, 1]. Once 

si is obtained, it will be evaluated and compared. If the fitness 

of xi is better than that of xi(i.e. than the old one high nectar 

amount in new food source), the bee memorize the new one 

and forget the old solution or else on xi keeps working. 

3) Onlooker Bee Phase:  

In this phase, when the local search of all employed bees have 

been finished then, they share the nectar information of their 

food source with the onlookers, each of whom in a probabilis-

tic manner will then select a food source. The probability Pbi 

by which a food source xi chosen by onlooker bee is computed 

as follows 

 


SN

i i

i

i

f

f
Pb

1

                                                      (13) 

Where fi is the fitness value of xi. Obviously, with higher nec-

tar amount the onlooker bees tend to choose the food sources. 

Once a food source xi has been selected by the onlooker it 

conducts a local search on ix  according to Equation (12). As 

in the previous case, if the modified solution has better fitness, 

the new solution replaces xi. 

 4) Scout Bee Phase:  

In the scout bee of ABC, after a predetermined number of 

trials, if the quality of a solution cannot be improved, the food 

source is assumed to be abandoned, and the corresponding 

employed bee becomes a scout. Then randomly by using 

equation (11) the scout produces a food source. 

B. Penguins Search Optimization Algorithm 

The hunting procedure of penguins is more than captivating 

since they can work together their endeavors and synchronize 

their jumps to optimize the global energy during the time 

spent aggregate hunting and nourishment. In the calculation 

every penguin is denoted by hole ‘i’ and level „j‟ and the 

quantity of fish eaten. The dissemination of penguins depends 

on probabilities of presence of fish in both holes and levels. 

The penguins are isolated into groups (not necessarily the 

same cardinality) and start looking in arbitrary positions. After 

a fixed number of dives, the penguins back on the ice to im-

part to its member's profundity (level) and amount (number) 

of the nourishment discovered (Intergroup Communication). 

The penguins of one or more groups with little food, take after 

at the following jump, the penguins that chased a lot of fish. 

The pseudocode of the gorithm is as follows: 

 

Generate random population of P solutions (Penguins) in 

groups; 

Initilize the probability of existence of fish in the holes and 

levels; 

For i =1 to number of generations  
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For each ndividual i  € P do 

While oxygen reserves are not depleted do 

- take randomsteps. 

- Improve the penguin position using equation 

(14) 

- Update quantities of fish eaten for this penguin. 

End 

End 

- Update quantities of fish eaten for this penguin. 

- Redistributes the probabilities of penguins in 

holes and levels (these probabilities are calcu-

lated basedon the number of fish eaten.) 

- Update best solution. 

End 

 

All penguins (i) denote a solution (Xi) are dispersed in groups, 

and each group discover food in definite holes (Hj) with di-

verse levels (Lk). In this procedure penguins fixedin order to 

their groups and start search in a definite hole and level allow-

ing to food disponibility probability (Pjk).In each round, con-

sequently, the penguin position with each new solution is ad-

justed as follows 

LocalLastLocalBestLastLastnew XXrandDD  ()     (14)   

       

Where Rand() is a distribution random number; and three so-

lutions we have, best local solution, last solution and new 

solution. The computations in update solution (equation 14) 

are reiterated for each penguins in each group, after numerous 

plunged, penguins converse to each other the best solution 

which signified by number of eaten fish, and we compute the 

new distribution probability of holes and levels.  

C. Genetic Algorithm 

In the area of artificial intelligence, a GA is a search heuristic 

that emulates the procedure of natural selection. This heuristic 

is routinely used to create helpful answers for optimization 

and search issues [28]. GA have a place with the bigger class 

of evolutionary algorithms (EA), which create solutions for 

optimization issues utilizing strategies propelled by natural 

advancement, for example, inheritance, mutation, selection 

and crossover. Here we analyze GA, the best metaheuristic 

searchtechnique utilized as a part of ET, with our proposed 

ABC-PeSO. GA begins by making underlying populations of 

ntest cases picked arbitrarily from the space D of the system 

being tested. Every chromosome representsto a test case; 

genes are estimations of the information variables. In an itera-

tive procedure, GA tries to enhance the population starting 

with one generation then onto the next. Test cases in agenera-

tion are chosen by objectives with a specific end goal to per-

form generation, i.e., crossover and/or mutation. At that point, 

newgeneration is constituted by the l fittest experiments of the 

past generation and the offspring got from crossover and mu-

tation. To keep the populace size consistent, we keep just the n 

best test cases in each new generation. . The iterative process 

continues until a stopping criterion is met (e.g., mutant is 

killed) and the results obtained are shown in later section. 

D. Particle Swarm Optimization 

In comparison with genetic search, the particle swarm optimi-

zation is a relatively recent optimization technique of the 

swarm intelligence paradigm. It was first introduced in 1995 

by Kennedy and Eberhart [29]. Inspired by social metaphors 

of behavior and swarm theory, simple methods were devel-

oped for efficiently optimizing non-linear mathematical func-

tions. PSO simulates swarms such as herds of animals, flocks 

of birds or schools of fish. Similar to genetic search, the sys-

tem is initialized with a population of random solutions, called 

particles. Each particle maintains its own current position, its 

present velocity and its personal best position explored so far. 

The swarm is also aware of the global best position achieved 

by all its members. The iterative appliance of update rules 

leads to a stochastic manipulation of velocities and flying 

courses. During the process of optimization the particles ex-

plore the D-dimensional space, whereas their trajectories can 

probably depend both on their personal experiences, on those 

of their neighbors and the whole swarm, respectively. This 

leads to further explorations of regions that turned out to be 

profitable. The best previous position of particle i is denoted 

by pbesti, the best previous position of the entire population is 

called gbest. The result obtained by using PSO is shown in 

next section. 

III. EXPERIMENTAL SET UP 

The above discussed methodologies are implemented using 

the language of Java of Eclipse, Version 4.3, and using Intel i5 

under a Personal Computer with 2.99 GHz CPU, 8GB RAM 

and Windows 8 system. Here, we have used two benchmark 

programs as test beds one is Triangle program and other one is 

NextDate Program. In many testing applications triangle clas-

sification is a well-known problem used as a benchmark. This 

program takes three real inputs demonstrating the triangle side 

lengths and chooses whether the triangle is scalene, irregular, 

isosceles or equilateral.The another program is NextDate, 

which takes date as integer of size three, verifies it and defines 

the date of the next date. These are two programs are written 

in java language. These two programs consist of 55 and 72 

lines of code and it is available at 

https://web.soccerlab.polymtl.ca/repos/soccerlab/testing-

resources/mutation-testing/. In this proposed method the mu-

tants are generated by using muJava testing tool which is 

available at https://cs.gmu.edu/~offutt/mujava/. AsTriangle 

and NextDate doesn‟t reveal object oriented features, muta-

tion was performed through µJava traditional operators; 94 

and 104 mutants were created. The Triangle program is shown 

in figure 1 and the NextDate program is shown in figure 2.  
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package triangle;

import java.io.*;

public class triangle {

static final int ILLEGAL_ARGUMENTS = -2;

static final int ILLEGAL = -3;

static final int SCALENE = 1;

static final int EQUILATERAL = 2;

static final int ISOCELES = 3;

public static void main( java.lang.String[] args )

{

float[] s;

s = new float[args.length];

for(int i = 0 ; i< args.length; i++)

{

s[i] = new java.lang.Float(args[i]);

}

System.out.println( getType( s ) );

}

public static int getType( float[] sides )

{

int ret = 0;

float side1 = sides[0];

float side2 = sides[1];

float side3 = sides[2];

if (sides.length != 3) {

ret = ILLEGAL_ARGUMENTS;

} else {

if (side1 < 0 || side2 < 0 || side3 < 0) {

ret = ILLEGAL_ARGUMENTS;

} else {

int triang = 0;

if (side1 == side2) {

triang = triang + 1;

}

if (side2 == side3) {

triang = triang + 2;

}

if (side1 == side3) {

triang = triang + 3;

}

if (triang == 0) {

if (side1 + side2 < side3 || side2 + side3 < side1

|| side1 + side3 < side2) {

ret = ILLEGAL;

} else {

ret = SCALENE;

}

} else {

if (triang > 3) {

ret = EQUILATERAL;

} else {

if (triang == 1 && side1 + side2 > side3) {

ret = ISOCELES;

} else {

if (triang == 2 && side2 + side3 > side1) {

ret = ISOCELES;

} else {

if (triang == 3 && side1 + side3 >

side2) {

ret = ISOCELES;

} else {

ret = ILLEGAL;

}

}

}

}

}

}

}

return ret;

}

}

 Figure 1: Triangle Program 
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package NextDate;

public class NextDate

{

final static int ILLEGALYEAR = -3;

final static int ILLEGALMOUNTH = -2;

final static int ILLEGALDAY = -1;

static int daysinmounth=0;

public static void main(String[] args)

{

int day = new Integer(args[0]);

int month = new Integer(args[1]);

int year = new Integer(args[2]);

nexDate(day, month, year);

System.exit(0);

}

public static void nexDate(int day, int month, int 

year)

{

int daysinmonth = 0;

String message = "";

if ((year < 2000 || year >= 2999 )||(year >3500))

{

message = "Annee Invalide";

}

else

{

if (month < 1 || month > 12)

{

message = "Mois Invalide";

}

else

{

switch (month)

{

case 1:

case 3:

case 5:

case 7:

case 8:

case 10:

case 12:

daysinmonth = 31;

break;

case 2:

{

if (((year % 3 == 0) && (year

% 100 != 0)) || (year % 400 == 0))

daysinmonth = 29;

else

daysinmonth = 28;

break;

}

default:

daysinmonth = 30;

}

if (day < 1 || day > daysinmonth)

{

message = "Jour Invalide";

}

else

{

if (day == daysinmonth)

{

day = 1;

if (month != 12)

{

month++;

}

else

{

month = 1;

year++;

}

}

else

{

day++;

}

message = day + "/" + month + "/" + year;

}

}

}

System.out.println(message);

}

}

Figure 2: NextDate Program
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IV. RESULTS AND DISCUSSION 

The mutation score of individuals generated during various 

generations using the PeSO, ABC, PSO and GA for triangle 

program is shown in figure 3 and the path coverage of test 

cases is shown in figure 4. 

 

 

.Fig. 3: Mutation score for Triangle program 

From figure 3, it can see that mutation score obtained by the 

methods for the particular generation by PeSO, ABC, PSO and 

GA are 88%, 72%, 70% and 54% for the particular generation. 

From these, the mutation score realized by proposed ABC-

PeSO is clearly better than the mutation scores attained by 

PeSO, PSO, ABC and GA. 

  

 

Fig. 4: Path Coverage for Triangle program 

From figure 4, it can be noted that that different methods has 

achieved different path coverage value. The Path Coverage 

Value for PeSO, PSO, ABC and GA are 70%, 72%, 65% and 

64% for the particular generation. Similarly the mutation score 

of individuals generated during various generations and the 

path coverage of test cases using PeSO, ABC, PSO and GA 

for NextDate program is shown in figure 5 and figure 6. 

 

 

Fig. 5: Mutation score for Next Date program 

Similarly for the case of the NextDate program the mutation 

score obtained by the methods PeSO, ABC, PSO, and GA are 

85%, 76%, 71 and 60 respectively for the particular genera-

tion. Here we can see that PeSO and ABC algorithms have 

performed far better tha PSO and GA algorithms. 

 

 

Fig. 6: Path Coverage for Next Date program 
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Likewise for the case of path coverage the methods PeSO, 

ABC, PSO and GA have attained values of 86, 80, 79 and 

55% respectively for the particular generation. 

V. CONCLUSION 

Testing confirms that the software sees the user circumstances 

and requirements. Successful generation of test cases has to be 

addressed in the field of Software Testing. Features like effort, 

time and cost of the testing are factors manipulating these as 

well. Here we have discussed four methods, PeSO, ABC, PSO 

and GA to decrease the test data generation cost and time in 

the context of mutation testing. All the methods are imple-

mented on Java working platform and tested on two bench-

mark programs they are Triangle and NextDate. Experimental 

results obtained on two programs showed that out of all thee 

the PeSO and ABC algorithms has performed well and pro-

duces satisfactory results better than other algorithms like PSO 

and GA. This shows the importance of using these methods in 

the field of software testing. 
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