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Abstract: In this paper we derive the generating function for the number of ith over Ga partitions when the parts are in AP. we also
obtain a formula for the number of the smallest parts of partitions of n.
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I. INTRODUCTION

ylve.Corteel and Lovejoy [1] initiated the study of overpartitions of n. Hanuma Reddy.K [2] derived a formula for the i"
smallest parts of overpartitions of n. Ga partitions were introduced by G.V.R.K.Sagar[3]. In this paper we introduce,

j"overGa partitions and r — j"overGa partitions of n and obtain generating functions in this context.

A partition of n is a Ga partition if smallest parts are of the form a*keN.ifo<r<n,ar—-Ga partitionof n
is a Ga partitionof nwith exactly r parts. A (r—) j"overGa partitionof n is a (r —)Ga partitionof n in which

first (equivalently, the final) occurrence of a part is over lined up to | times successively. We denote the set of

_ N - —
j"overGa partitionsofnby Ga §(n)J and its cardinality by Ga p(n) .

we also obtain the generating function for Gg spt( n)J .

Il. GENERATING FUNCTION FOR NUMBER OF PARTITIONS WITH PARTS IN A.P.
Hanuma Reddy.K [2 ] established that the generating function for the number of partitions of n into I parts with s distinct
parts s, tt,, t4s, ., L, , OCCUrring with fixed frequencies f,, f,, f,,..., f, is

ft(fy £ )+ Fy+ Fot fo )bt Frot Fpto b F)

q
1— q fi+f, )(1_ q fit fot fy )(1_ q f1+f2+.“+fs)

> f, f, fs. n_
;pr(lui vHy T Hy 'n)q (l_qfl)(

We extend this result as follows

2.1 Theorem : The generating function for the number of partitions of n into I parts with s distinct parts u,, 1,, s, ..., 14,
occurring with fixed frequencies f,, f,, f,,..., f, and these parts belong to the set S = {a+(k -1)d|a,d,keN } isand are in A.P

fr.d+(fp+ fp ) d+(fi+ Fpt fy ) d o (Fy+ fp ot fo ) d+(f+ fp ot )2

nz:;, p: (,Lllfl ,,uzfz ,...,,usfs ; n)qn - (1_ q?l.d )(1_ q(f1+f2).d )(1_ q(f1+f2+f3).d )...(l— q(f1+f2+“.+fs)Ad )

Proof: Any partition of a number n into [rparts can be written in the form(Mfl,yZ’Z,...,ysfS) where

>y >y phy, T+ T, +..+ f =rand 1" represents occurrence of 4, f;times. A simple example is
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Replacing s bys+1 in first parta + (S —1)d there are two possibilities for the second part a + (s - 2)d . We can either replace
a+(s—2)d by a+(s—1)d or leave it unaltered.

Thus, given the “frequencies “ f,, f,, f;,..., f,,” systematic change of parts of all possible partitions into I parts of which s are
distinct and occur with specified frequencies can be listed jn an array and a generating function for each column can be defined.

Let 1<s<r, f, f,,...,f be given frequencies. Starting with the I partition

([a+ (s —1)d]fl Ja+(s—2)d ]f2 (a+2d )Sf2 (a+d )H , as) we consider the problem when the first place only is altered.
Replace in the first part , s with (frequencies f;) by s+1 . The next part could bea+(s —1)d or a+(s—2)d . These choices
yield two partitions.

For example if we chose a=3,d =2,s=2and f, =2, f, =3 our partition 5+5+3+3+3 gives two partitions 7+7+3+3+3 and
7+7+5+5+5,
We arrange them in two rows as follows:

5+5+3+3+3

7+7+3+3+3 and 7+7+5+5+5.
We repeat this process, now replacing 7 in the second row by 9, to get the third row 9+9+3+3+3, 9+9+5+5+5 and 9+9+7+7+7
Successive application of this process yields the following partitions in the (j +1)th row is, in the general case,

{3+[(i+2)-1]2}+{3+[(i+2)—1]2} +3+3+3, {3+[(i+2)-1]2}+{3+[(i+2)-1]2} +5+5+5,

B+ [(§+2)-1]2) +{3+[ (i +2)-1]2} {3+[ (i +1)-1]2} + {3+ [ (i +1)-1]2}{3+[(i+2)-1]2}

partis s with the frequency f, , the ( j +1)th row is

When the largest

([a+(s+ i-1)d]* [a+(s-2)d]" [a+(s-2)d]" ,...,(a+2d)s’2,(a+d)H,as)
([a+(s+ j_l)d]“,[a+(s_1)d]f2,[a+(s_z)d]f2,...,(a+zd)5‘2,(a+d)$‘l,as)
([a+(s+i-1d]" [a+(s)d]" [a+(s-2)d]" . (a+2d) " (a+d) ™ a")
([a+(s+j_l)d]“,[a+(s+1)d]‘2 ,[a+(s_z)djf2,...,(a+zd)S'z,(a+d)S‘l,as)
and so on and the last element in this row is

([a+(s+ i-1)d]" [a+(s+ j—2)d}f2,[a+(s—2)d:|f2,...,(a+2d)s'2,(a+d)s_l,as)

We repeat this process and obtain a triangular array in which the first part of the partitions in the first column increases by d with
frequency f, , the first and second parts increase by d with frequencies f, , f, and so on.

Lety = f.[a+(s—-1)d ]+ f,[a+(s—2)d |+..+ f_,.(a+2d )+ f .(a+d)+ f.aand 0<q<1. Associate
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q 100D £ the | element in the k™ column (i=k).
This yields the required generating function in the following form

The generating function for each ( jth ) column is

o r+(k=2)d (f+ 1),

Ziq7+[(j+k—1)d]f1+(k—1)d-fz iqu jd)tr(k-2)d (fy+ 1), :i q

k=0 j=0 k=0 j=0 k=0

yHk-1)(fi+1f,)d

Y
The required generating function is Z g g
o (1 qd fl) (1 qd fl)( qd.(f1+f2))

which converges when 0<q<1.

In the general case the generating function is

o td\(1_ (f1+f2)dy — (hrfpraty)d
(1 q )(1 q )(1 q )

where y = f.[a+(s-1)d |+ f,[a+(s-2)d ]+..+ f_,.(a+2d)+f_.(a+d)+f.a

Hence the generating function for the number of partitions of n into I parts with s distinct parts s, 11,, 145, ..., 14, , Occurring with
fixed frequencies f,, f,, f,,..., f, and these parts belong to the set S = {a+(n -1)d|a,d,ne N} is

frd+(ffy ). d+( fi+-For f ) d ot Fi+ for o ) d+(Fr+ fo o f A

2pr(/Lﬁfl,/'lsz’...,/Jsfs;n:S)qn=<1_qf(jd)(l_qf1+f2 )(1 qf1+f2+f3 ) (1 qf1+f2+...+fs).d)

Note: If we put a =1 and b =1in the above we get formula which is derived by Hanuma Reddy.K in [ 2]

22 (n) = q'(-j.9),

f (),
Proof: Since the generating function for the number of partitions of n into I parts with S distinct parts s, 1, 243, ..., 4 ,
occurring with fixed frequencies f, f,, f;,..., f, is

fit(fy £ )+ Fy+ fot fo )bt Frot Fpto b F)

> £ foo \an q
nZ:l:pr(M v Py Uy ,n)q _(l_qfl)(l_qf1+fz)(1_qf1+f2+f3)."(1_qf1+f2+.“+fs)

The generating function for the number of partitions of n into I parts for all linear combinations of f,, f,, f,,..., f; such that
fi+f,+f,+. . +f =ris

b, () = d

) (1_ q fl)(l_ q fi+, )(1_ q fi+ ot fy )---(1—C| (R )

So the generating function for the number of j™ overpartitions of n into I parts

fb(fy £ )+( Fy+ Fot fg )bt (Fit Fobt £
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© j n i s q fb(fr Fo )+ Fyt fot Fo )bt Frob Fpb it )
2 p (n) q =(J +1) (1_qf1)(1_qf1+fz )(1_qf1+f2+f3)...(l_qf1+f2+...+fs)

= "

a'(-J.a),

(a),

~(i+1)

Examples

(i) r=1.Then f =1
g _(i+Ya_a(-i.a),

épl(n)anz(j-’-l)l (1_q1)_ (I—Q) (q)l

(i) r=2.
Then the possibilitiesare s =1, 2.

= f,=2o0r f,+f,=1+1

. i . q? (Y 1+(2)
épz(n)q =(j+1) (1_q2) (i+1) (1—01 )(1—012)
—(i+ o’ +(j+ a

-0 1)(1—qz){l U ig)

(i) r=3
Then the possibilitiesare s=1, 2, 3.
= f,=8o0r f,+f,=2+10or f,+f,=1+20r f +f,+f,=1+1+1

2+(2+1)

3 )0 = (0 e (0 ey
" (-a) 7 fed)-a) T (e (-a
L+(1H1)+(1+14+1)

+ ( J +1) (1_ ql)(l_ q1+1)(1_ q1+1+1)

_ @A)+ ie’) o'(-ia),
(1-q)(1-o*)(1-o*) (a),

-
I1l. GENERATING FUNCTION FOR Ga spt(n) .

In this section we propose a formula for finding the number of smallest parts of partitions of n.

3.1 Theorem: If 1<a<n,
Page 137
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00

Gaspt(n)JZ > p(ak‘l, n —tak‘l)J +i>.> p(ak—l +1n _tak—l)J +(j+1)d(a,n)Proof: Let

0
k=1 t=1 k=L t=1

A= (lul"‘l,‘uz‘”z ,...,,Ll,flo"’l,(ak_l)aI ) be any r —Ga partition with I distinct parts ,ul,yz,...,y,fl,(ak*l).

For fixed T three cases arise.

Casel:Letl >a, =t If (,uf‘l,,uz"’2 ,...,ulfla"l,(ak_l)a' ) = (A Ayyes Ay ) then 2, >a ™,

By subtracting a** from each part of (,ul“l L gy (ak_l)aI ) , We get N —ta“t= (Mal AN )

Hence n—ta“™ :(M%,ﬂzaz,...,ylfl"'fl) isa (r—t)— partition of n—ta‘" with |- 1 distinct parts and each 2
- . -1 . . -
a*' +1. Corresponding to this there are (j +l) times (r —t) — j™overpartitions of n —ta“™. We know that the total

number of I — j"overGa partitions is (i +1)| . Thus the number of I — j"overpartitions having exactly t smallest

12 . i
parts each equal to a“"in the set(;ﬁ“l,,uzaz,...,y,1““,(&“) ') is (] +l).p t(aH +1,n—tak’l) .

e
Case2: F>a >t.Then 4_ =a“".

ot
Omit a“*'s from last t places, then N—ta*™ =(,LLL“1,,L12“2,...,,u,l“”,(ak"l) ' )

isa (r—t)—Ga partition of n—ta*™ with | distinct arts, the least part bein a“'.  Corresponding to this, there are
(r—t) p p p g ponding

(i +1)I (r — j"overGa partitions) of n—ta“™* with least part 2.

Thus the number of I — j"overGa partitions having more than  t smallest parts, each being a** in

P i
o a o4 k-1\" . _ _
(/'Llluuz 2!---!/u|71| !(a ) ) IS Gaf (a.k 1,n_tak l) .
r-t
Case 3: =, =1. Then all parts of the Ga partition are equal and each part is of the form a“ . This Partition has (j +1)
times of I — j"overGa partitions of n.

The number of Ga partitions of n with equal parts each being a“! isequal to d (a, n) . The number of devises of

N of the form @“ Since the number of such divisors of n is & , the number of j"0verGa partitions of n is (j +1)a .

From cases (L), (2) and (3) it follows that the numbe r of F — j"overGa partitions of n with smallest part 8™
which occurs t times is

Ga f (a"‘l,n—ta"‘l)1+(j+1).p

i
r—t (a*t+1n—ta*?t) +(i+1)d(an)

r—t
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]

=Gaf,_ (a“?n —tak‘l)J +p, (P +1n-ta"?)

o
+jp,_ (@ t+n—tat) +(j+1)d(an)

i i
= pr_t(ak—l,n_tak—l) +]. pr_t(ak_l+1,n—tak_l) +(J+1)d(a,n)

From[1] the number of smallest parts in j"overGa partitions of n is

Gaspt(a“?, n)j = ii p(a“*n —ta“)j + JZi p(a“t+1n —ta“)j +(i+1).d(an)

o0 o0
k=1 t=1 k=1 t=1 k=1

3.2 lllustration
As an illustrationwe take n = 6, a=2and j= 2

The partitions under consideration are listed below with totals indicated at the end of the row. The total number of underlined
partsis 171 as detailed below

r=2 A, =5 overptns 09

A =4 09
r=3 A =4 18
A =3 24
=2 12
r=4 A, =3 20
A =2 20
r=>5 A =2 34
A =1 25

We now apply the formula,

=Hp(1’5)2+ p(l,4)2+ p(1,3)2+ p(L, 2)2+ p(l,l)2}+|:p(2,4) + p(2,2)2ﬂ

+2{( p(2,5)2+ p(2,4)2+ p(2,3)2+ p(2,2)2)+( p(3,4)2)}+3.2

={(51+27+15+6+3)+(6+3)} +2{(12+6+3+3)+(3)} + 6
=171

Acknowledgement: The authors are thankful to (Rtd) professor |.Ramabhdra sarma for his valuable suggestions and comments
during preparation of this paper.

2

REFERENCES

[1]. Sylve Corteel and Jeremy Love joy :Over partitions , Trans.Amer.Math.Soc 356(4) 1623-1635.
[2]. Hanumareddy .K (2010). A study of r-partitions, thesis submitted to Acharya Nagarjuna university for award of phD in Mathematics
[3]. Segar G.V.R.K: A study of M2 partitions. Thesis submitted Acharya Nagarjuna university for award of PhD in Mathematics.

www.ijltemas.in Page 139



