
 IJLTEMAS VOLUME I ISSUE VII 2ICAE-2012 GOA

59

Analysis & Comparison Different Adders
 Mr. Pradeep Kumar Sharma

#1
, Ms anamika Singh

#2
, Mr. Nityanand Sharma

#3

#1 RCERT, Sitapura, Jaipur

#2, Suresh Gyan Vihar University,Jaipur

#3, Jagan nath University, Jaipur
1pks011279@gmail.com, 4agarwal_ksh@yahoo.com

Abstract

This paper is primarily deals the construction of high speed

adder circuit using Hardware Description Language (HDL) in

the platform Xilinx ISE 9.2 iandimplement the monField

Programmable Gate Arrays (FPGAs) to analyze the design

parameters.Them otivation behind this investigation is that

anadder is a very basic building block of Arithmetic Logic

Unit (ALU) and would be alimiting factor in performance of

Central Processing Unit(CPU) .Design of a high speedsing

lecoreprocessor is the future goal of this paper. Single

coreprocessor would have many advantages over amultiple-

coreapproach.Task execution on asing lecore is a well unders

too the process, while executionon many cores is a problem

that has not yet been solved. There a reals ocomputational

tasks which parallelize very badly, where asinglehigh clock

rate processor would suitthem very well. Such a high speed

processor needs certain components that should support high

speed.The two main components of processors are the ALU

and the register file. The one of the critical path with in an

ALU may be the carry-chainin addition operation.

INTRODUCTION

The saying goes that if you can count, you can control.

Addition is a fundamental operation for any digital system,

digital signal processing or control system. A fast and

accurate operation of a digital system is greatly influenced by

the performance of the resident adders. Adders are also very

important component in digital systems because of their

extensive use in other basic digital operations such as

subtraction, multiplication and division. Hence, improving

performance of the digital adder would greatly advance the

execution of binary operations inside a circuit compromised

of such blocks. The performance of a digital circuit block is

gauged by analyzing its power dissipation, layout area and its

operating speed. Comparing the performance metrics for the

16-bit adders implemented on Xilinx FPGA board, using

Synopsys synthesis tools, the tradeoffs becomes apparent. As

can be seen there exist an inverse relationship between time

delays, operating speed, and circuit area, in this case

the number of CLBs (measure of the area). The ripple carry

adder, the most basic of flavors, is at the one extreme of this

spectrum with the least amount of CLBs but the highest

delay. The carry select adder on the other hand, is at the

opposite corner since it has the lowest delay (half that of the

ripple carry’s) but with a larger area required to compensate

for this time gain. Finally, the carry look-ahead is middle

ground. Power dissipation, for this case study, is in direct

proportion to the number of CLBs.

For more information on different adders, please see

Appendix

DESIGN OBJECTIVE

To Design an optimized Gate level Logic for the following

adders:

1. Ripple Carry Adder

2. Bit Serial Adder

3. Carry Look Ahead Adder

4. Carry Select Adder

To compare the above Adder Architectures on the basis of

their performance in terms of Area, Timing and Power.

Benefits of Using Flow HDL. The flow HDL design software

provides top down graphical front-end tools for easy analysis

of complex designs in a comprehensive format. This uses

flow Diagrams instead of hardware development language

(HDL) or schematic representation. FlowHDL allows one to

concentrate on the more abstract aspects of the design by

correcting common errors. Through static checking and

simulation, we can easily capture graphical design

specifications.

It also increases productivity by reducing the time it takes to

move from an initial idea to a testable design.

mailto:1pks011279@gmail.com
mailto:4agarwal_ksh@yahoo.com

 IJLTEMAS VOLUME I ISSUE VII 2ICAE-2012 GOA

60

TYPES OF ADDER

In this lecture we will review the implementation technique of

several types of adders and study their characteristics and

performance. These are

 Ripple carry adder, or carry propagate adder,

 Carry look-ahead adder

 Carry skip adder,

 Manchester chain adder,

 Carry select adders

 Pre-Fix Adders

 Multi-operand adder

 Carry save Adder

 Pipelined parallel adder

For the same length of binary number, each of the above

adders has different performance in terms of Delay, Area, and

Power. All designs are assumed to be CMOS static circuits

and they are viewed from architectural point of view.

BASIC ADDER UNIT

The most basic arithmetic operation is the addition of two

binary digits, i.e. bits. A combinational circuit that adds two

bits, according the scheme outlined below, is called a half

adder. A full adder is one that adds three bits, the third

produced from a previous addition operation. One way of

implementing a full adder is to utilizes two half adders in its

implementation. The full adder is the basic unit of addition

employed in all the adders studied here

HALF ADDER

A half adder is used to add two binary digits together, A and

B. It produces S, the sum of A and B, and the corresponding

carry out Co. Although by itself, a half adder is not extremely

useful, it can be used as a building block for larger adding

circuits (FA).One possible implementation is using two AND

gates, two inverters, and an OR gate instead of a XOR gate as

shown in Fig. 1.

A B S CO

O 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table:1 Half-Adder truth table

Boolean Equation:

 S=A’B+AB’

 CO=AB

FULL ADDER

A full adder is a combinational circuit that performs the

arithmetic sum of three bits: A, B and a carry in, C, from a

previous addition, Fig. 2a. Also, as in the case of the half

adder, the full adder produces the corresponding sum, S, and a

carry out Co. As mentioned previously a full adder maybe

designed by two half adders in series as shown below in

Figure2b.The sum of A and B are fed to a second half adder,

which then adds it to the carry in C (from a previous addition

operation) to generate the final sum S. The carry out, Co, is

the result of an OR operation taken from the carry outs of

both half adders. There are a variety of adders in the

literature both at the gate level and transistor level each giving

different performances.

BOOLEN EQUATIONS AND FULL ADDER BLOCK

DIAGRAM

 IJLTEMAS VOLUME I ISSUE VII 2ICAE-2012 GOA

61

PARALLEL ADDERS

Parallel adders are digital circuits that compute the addition

of variable binary strings of equivalent or different size in

parallel. The schematic diagram of a parallel adder is

shown below in Fig. 3.

 FUNCTIONAL DESCRIPTION

RIPPLE CARRY ADDER

The ripple carry adder is constructed by cascading full adders

(FA) blocks in series. One full adder is responsible for the

addition of two binary digits at any stage of the ripple carry.

The carryout of one stage is fed directly to the carry-in of the

next stage. A number of full adders may be added to the

ripple carry adder or ripple carry adders of different sizes

may be cascaded in order to accommodate binary vector

strings of larger sizes. For an n-bit parallel adder, it requires n

computational elements (FA). Figure 4 shows an example of

a parallel adder: a 4-bit ripple-carry adder. It is composed of

four full adders. The augend‟s bits of x are added to the

addend bits of y respectfully of their binary position. Each bit

addition creates a sum and a carry out. The carry out is then

transmitted to the carry in of the next higher-order bit. The

final result creates a sum of four bits plus a carry out (c4).

Even though this is a simple adder and can be used to add

unrestricted bit length numbers, it is however not very

efficient when large bit numbers are used. One of the most

serious drawbacks of this adder is that the delay increases

linearly with the bit length. As mentioned before, each full

adder has to wait for the carry out of the previous stage to

output steady-state result. Therefore even if the adder has a

value at its output terminal, it has to wait for the propagation

of the carry before the output reaches a correct value as

shown in Fig. 5.

Taking again the example in figure 4, the addition of x4 and

y4 cannot reach steady state until c4 becomes available. In

turn, c4 has to wait for c3, and so on down to c1. If one full

adder takes Tfa seconds to complete its operation, the final

result will reach its steady-state value only after 4.Tfa

seconds. Its area is n Afa A (very) small improvement in area

consumption can be achieved if it is known in advance that

the first carry in (c0) will always be zero. (If so, the first

full adder can be replace by a half adder). In general,

assuming all gates have the same delay and area of NAND-2

then this circuit has 3n Tgate delay and 5nAgate. (One must

be aware that in Static CMOs, this assumption is not true).

Gate delays depend on intrinsic delay + fanin delay+fanout delay.

 IJLTEMAS VOLUME I ISSUE VII 2ICAE-2012 GOA

62

 Generally speaking, the worst-case delay of the RCA is

when a carry signal transition ripples through all stages of

adder chain from the least significant bit to the most

significant bit, which is approximated by:

 t=(n-1)tc+ts

where tc is the delay through the carry stage of a full

adder, and ts is the delay to compute the sum of the last

stage. The delay of ripple carry adder is linearly proportional

to n, the number of bits, therefore the performance of the

RCA is limited when n grows bigger. The advantages of

the RCA are lower power consumption as well as a compact

layout giving smaller chip area.

To design a larger adder ripple carry adders are cascaded. An

example of 37 bit carry propagate adder is shown in Fig. 6

CARRY SKIP ADDER

A carry-skip adder consists of a simple ripple carry-adder

with a special speed up carry chain called a skip chain.

This chain defines the distribution of ripple carry blocks,

which compose the skip adder.

BOOLEAN EQUATIONS OF A FULL ADDER

Supposing that Ai = Bi, then Pi in equation 1 would become

zero (equation 4). This would make Ci+1 to depend only on

the inputs Ai and Bi, without needing to know the value of

Ci.

Therefore, if Equation 4 is true then the carry out, Ci+1, will

be one if Ai = Bi = 1 or zero if Ai = Bi = 0. Hence we

can compute the carry out at any stage of the addition

provided equation 4 holds. These findings would enable

us to build an adder whose average time of computation

would be proportional to the longest chains of zeros and of

different digits of A and B. Alternatively, given two binary

strings of numbers, such as the example below, it is very

likely that we may encounter large chains of consecutive bits

(Block 2) where Ai Bi. In order to deal with this scenario

we must reanalyze equation 3 carefully.

In the case of comparing two bits of opposite value, the carry

out at that particular stage, will simply be equivalent to the

carry in. Hence we can simply propagate the carry to the

next stage without having to wait for the sum to be calculated.

TWO RANDOM BIT STRINGS

In order to take advantage of the last property, we can design

an adder that is divided into blocks, as shown in Fig. 7,

where a special purpose circuit can compare the two

binary strings inside each block and determine if they are

equal or not. In the latter case the carry entering the block

will simply be propagated to the next block and if this is the

case all the carry inputs to the bit positions in that block are

 IJLTEMAS VOLUME I ISSUE VII 2ICAE-2012 GOA

63

all either 0‟s or 1‟s depending on the carry in into the block.

Should only one pair of bits (Ai and Bi) inside a block be

equal then the carry skip mechanism would be unable to skip

the block. In the extreme case, although still likely, that there

exist one such case, where Ai = Bi, in each block, then no

block is skipped but a carry would be generated in each

block instead.

CARRY SKIP CHAIN

In summary the carry skip chain mechanism (Figure 7)

works as follows: Two strings of binary numbers to be added

are divided into blocks of equal length. In each cell within a

block both bits are compared for un-equivalence. This is

done by Exclusive ORing each individual cell (parallel

operation and already present in the full adder) producing a

comparison

String. Next the comparison string is ANDed within itself in

a domino fashion. This process ensures that the

comparison of each and all cells was indeed unequal

and we can therefore proceed to propagate the carry to the

next block. A MUX is responsible for selecting a

generated carry or a propagated (previous) carry with its

selection line being the output of the comparison circuit just

described. If for each cell in the block Ai ≠ Bi then we

say that a carry can skip over the block otherwise if Ai = Bi

we shall say that the carry must be generated in the block.

When studying carry skip adders the main purpose is to find

a configuration of blocks that minimizes the longest life of a

carry, i.e. from the time of its generation to the time of the

generation of the next carry Many models have been

suggested: the first with blocks of equal size and the second

with blocks of different sizes according to some heuristic.

 CARRY BYPASS CIRCUIT ARCHITECTURE

The delay of n-bit adder based on m-bit blocks of Carry

Bypass Adder, CBA rippled together can be given by:

t=tsetup+mtcarry+(n/m-1) tcarry+tsum

where tc is the delay through the carry stage of a full

adder, and ts is the delay to compute the sum of the last

stage. The delay of ripple carry adder is linearly proportional

to n, the number of bits, therefore the performance of the

RCA is limited when n grows bigger. The advantages of

the RCA are lower power consumption as well as a compact

layout giving smaller chip area.

To design a larger adder ripple carry adders are cascaded. An

example of 37 bit carry propagate adder is shown in Fig. 6

CARRY SKIP ADDER

A carry-skip adder consists of a simple ripple carry-adder

with a special speed up carry chain called a skip chain.

This chain defines the distribution of ripple carry blocks,

which compose the skip adder.

Carry Skip Mechanics

The addition of two binary digits at stage i, where i 0, of

the ripple carry adder depends on the carry in, Ci , which in

reality is the carry out, Ci-1, of the previous stage.

Therefore, in order to calculate the sum and the carry out,

Ci+1 , of stage i, it is imperative that the carry in, Ci, be

 IJLTEMAS VOLUME I ISSUE VII 2ICAE-2012 GOA

64

known in advance. It is interesting to note that in some

cases Ci+1 can be calculated without knowledge of Ci.

BOOLEAN EQUATIONS OF A FULL ADDER

Supposing that Ai = Bi, then Pi in equation 1 would become

zero (equation 4). This would make Ci+1 to depend only on

the inputs Ai and Bi, without needing to know the value of

Ci.

Therefore, if Equation 4 is true then the carry out, Ci+1, will

be one if Ai = Bi = 1 or zero if Ai = Bi = 0. Hence we

can compute the carry out at any stage of the addition

provided equation 4 holds. These findings would enable

us to build an adder whose average time of computation

would be proportional to the longest chains of zeros and of

different digits of A and B. Alternatively, given two binary

strings of numbers, such as the example below, it is very

likely that we may encounter large chains of consecutive bits

(Block 2) where Ai Bi. In order to deal with this scenario

we must reanalyze equation 3 carefully.

In the case of comparing two bits of opposite value, the carry

out at that particular stage, will simply be equivalent to the

carry in. Hence we can simply propagate the carry to the

next stage without having to wait for the sum to be calculated.

TWO RANDOM BIT STRINGS

In order to take advantage of the last property, we can design

an adder that is divided into blocks, as shown in Fig. 7,

where a special purpose circuit can compare the two

binary strings inside each block and determine if they are

equal or not. In the latter case the carry entering the block

will simply be propagated to the next block and if this is the

case all the carry inputs to the bit positions in that block are

all either 0‟s or 1‟s depending on the carry in into the block.

Should only one pair of bits (Ai and Bi) inside a block be

equal then the carry skip mechanism would be unable to skip

the block. In the extreme case, although still likely, that there

exist one such case, where Ai = Bi, in each block, then no

block is skipped but a carry would be generated in each

block instead.

CARRY SKIP CHAIN

In summary the carry skip chain mechanism (Figure 7)

works as follows:

Two strings of binary numbers to be added are divided into

blocks of equal length. In each cell within a block both bits

are compared for un-equivalence. This is done by Exclusive

ORing each individual cell (parallel operation and already

present in the full adder) producing a comparison String.

Next the comparison string is ANDed within itself in a

domino fashion. This process ensures that the comparison

of each and all cells was indeed unequal and we can

therefore proceed to propagate the carry to the next block.

A MUX is responsible for selecting a generated carry or a

propagated (previous) carry with its selection line being the

output of the comparison circuit just described. If for each

cell in the block Ai ≠ Bi then we say that a carry can skip

over the block otherwise if Ai = Bi we shall say that the

carry must be generated in the block. When studying carry

skip adders the main purpose is to find a configuration of

blocks that minimizes the longest life of a carry, i.e. from the

time of its generation to the time of the generation of the next

carry. Many models have been suggested: the first with

blocks of equal size and the second with blocks of different

sizes according to some heuristic.

 IJLTEMAS VOLUME I ISSUE VII 2ICAE-2012 GOA

65

 CARRY BYPASS CIRCUIT ARCHITECTURE

The delay of n-bit adder based on m-bit blocks of Carry

Bypass Adder, CBA rippled together can be given by:

t=tsetup+mtcarry+(n/m-1) tcarry+tsum (7)

n is the adder length and m is the length of the blocks

Comparing to the RCA, the CBA has slightly improved speed

for wider-bit adders (still linear to n), but with higher active

capacitance and the area overhead because of the extra bypass

circuit.

THE ADDER

A Manchester carry adder consists of cascaded stages of

Manchester propagation cells, shown above. The optimum

amount of cascaded stages may be calculated for a technology

by simulation. For a 16 bit adder example a 4-bit adder made

up of four static stage cells, shown in figure 9, is chosen in

order to reduce the number of series-propagate transistors,

which greatly improves speed. In the case of a four-bit

adder, the maximum number of transistors that are in series

with the gate, when all propagate signals and Ci is true, is

only five.

 Fig 9: 4 BIT MANCESTER CARRY SECTION

In addition to the cascaded Manchester propagation cells the

adder requires carry propagation and carry generation logic,

also called a PG generator shown in Figure 10. Finally to

complete the design four XNOR blocks each of which

produces the SUM at each particular stage is required.

To further reduce the worst-case propagation time of the

Manchester carry adder in the case where Ai B i, for all i,

an additional bypass circuit is introduced in order to bypass

the four stages. The circuit is illustrated in Figure 11.

FIGURE10. PG LOGIC AND SUM LOGIC

Fig11. MANCESTER CARRY ADDER WITH CARRY

BEPASS

Other Manchester adders’ implementations are possible. One

such adder is based on MUXes called a conflict free

Manchester Adder. Although this version reduces even

further the propagation time of the adder, it still embodies the

core of a Manchester adder whose ultimate goal is to achieve

the reduction of the worst-case time propagation by

employing a Manchester cell. A Manchester Adder can be

constructed by designing a cell and cascading it as shown in

the Figures 12.

 IJLTEMAS VOLUME I ISSUE VII 2ICAE-2012 GOA

66

Fig 12. THE CONFIGURATION OF THE MANCESTER

ADDER/SUBTRACTOR

LARGE ADDER DESIGN

Large adders require a special design. Most standard adders

are modified in a way or other to be able to use them for

larger designs. For example Carry Look Ahead adders are

modified as hierarchical 2 level circuits. This is because as n

increases, the block size has to be limited as

well as ripple through delay accumulates. It is no longer

practical to use standard look-ahead method. The hierarchical

CLA has two levels. In this design, the first level of CLAs

generates the sums as well as the second level „generate and

propagate signals. These signals then are fedto the 2nd level

CLA with carryout of each level to produce the carryout

signal. Each Block CLA has a special design. For more details

one can refer to: Assume that you want to design a 32 bit

CLA adder. One way is to divide the adder into four 8- bit

CLA with carry ripple between them. Other method would be

to design a 2- level hierarchical adder as shown below.

In the above diagram

PB0= P7P6P5P4P3P2P1P0

And

GBo=g7+p7g6+p7P6G5+………….P7P6P5P4P3P2P1G0

Other carrys then can be obtained using CLA methodology as

c8 = GB0 + PB0 cin

c16 =GB1 + PB1 c8

c24= GB2 + PB2 c16

c32 = GB3 + PB3 c24

Another method is to use a Block CLA, without going into

details an example a large 53 bit CLA is shown in Fig 14.

FIGURE14. A 53 BIT CARRY LOCK AHEAD ADDER

PERFORMANCE STATIISTICS

 IJLTEMAS VOLUME I ISSUE VII 2ICAE-2012 GOA

67

COMPARATIVE RESULTS

AREA COMPARISON CHART

POWER CONSUMPTION COMPARISON CHART

DATA ARRIVAL TIME COMPARISON CHART

CONCLUSION

Implemented the basic binary architectures of the following

adders:

1. Bit Serial Adder,

2. Ripple Carry Adder,

3. Carry Look Ahead Adder, and

4. Carry Select Adder.

We have implemented these adders for 8, 16, 32 and 64 bits

and analyzed their performance in terms of Area, Power and

Timing requirements. This study enabled us to select a

particular type of Adder for optimum performance.

The type of adder to be selected depends on three factors:

1. Area of the layout that influences the cost.

2.Timing and power that influences the performance of the

adder. So, the selecting an adder is a trade off between all the

above factors. As area increases the speed of the circuit also

increases, resulting in high costs. So, there should be a kind of

balance between these factors.

In our implementation of adders we prefer the carry select

adder because of its speed. However it occupies larger area

when compared to other architectures.

 REFRENCES

[1] Stefan Sjoholm and Lennart Lind, VHDL for

designers, Prentice Hall, 1997

[2] Vitit Kantabutra, “Designing optimum One-Level

Carry-Skip Adders” IEEE

Transactions on Computers, Vol.42, No.6, June 1993

[3] Luigi Dadda and Vincenzo Piuri, “Pipelined adders”

IEEE Transactions on

Computers, Vol.45, No.3, March 1996

 IJLTEMAS VOLUME I ISSUE VII 2ICAE-2012 GOA

68

[4] M. Morris Mano, Digital Design second edition,

Prentice Hall, 1991

[5] Carver Mead and Lynn Conway, Introduction to VLSI

design, Addison-Wesley

Company, 1980

[6] Jien-Chung Lo, “A fast binary adder with conditional

carry generation” IEEE Transactions on Computers, Vol.46,

No.2, February 1997

[7] N.H.E. Weste and K. Eshraghian, Principle of CMOS

VLSI Design, Addison- Wesley Company, 1992

[8] Peter Pirsch, Architectures for digital signal processing,

John Wiley & Sons,

1998

[9] A. Guyot, B. Hochet and J.M. Muller, “A way to build

efficient Carry-Skip

adders”, IEEE Transactions on Computers, pp.1144-1152,

October 1987

[10] S. Brown, Z. Verasenic, “Fundamentals of Digital Logic

with VHDL,” Mc. Graw

Hill, 2nd edition, 2004.

