
Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 98

Efficient Document Placement in Hadoop

Pratik Thakkar, Saurabh Thakre, Prakash Thete, Ajinkya Wani, D.D. Gatade

Department of Computer engineering,

Sinhgad College of Engineering,

Pune -41, India

pratikthakkar11@gmail.com, thakresaurabh009@gmail.com, prakashthete777@gmail.com, ajinkyawani@gmail.com,

ddgatade.scoe@sinhgad.edu

Abstract: Hadoop is an open source java based

implementation of Google’s map-reduce framework. It is

implemented for applications which are highly parallelized

and use large clusters. Map-Reduce is a programming

model which is used for processing large data

sets.Programs written in this style are automatically

parallelized and can be run on large clusters of commodity

machines. Parallel computation makes the processing

faster and reduce the time complexity. Hadoop framework

is known for its high fault tolerance and capacity to work

upon terabytes of data.

We will process the large data for document similarity. It

is possible to form desired document clusters according to

similarities in their content. This will help to reduce

manual overhead of sorting the data and efficient storage

and retrieval of information.

Keywords-Hadoop, Map-Reduce, Cluster, Keyword

Identification, Cluster Formation

I. INTRODUCTION

nformation explosion is the rapid increase in the amount

of published information and the effects of this

abundance of data. As the amount of available data grows,

the problem of managing the information becomes more

difficult, which can lead to information overload. The

World Wide Web saw a revolution with the advent of Web

2.0. Web applications became more interactive, allowing

users the freedom to interact and collaborate over the

Internet in ways not possible earlier. Users started to take

the role of content creators rather than passive viewer of

web pages. Websites started to get swamped with user-

generated content from blogs, videos, social media sites and

various other Web 2.0 technologies. This had the direct

consequence of information stored on servers exploding

into sizes not seen earlier. Contributing to this information

explosion was the already accumulating business data that

was generated everyday across various companies and

industries. These were just a couple of reasons that led to

the age of Petabytes - an age where information stored in

data stores reached levels of Petabytes or 1024 Terabytes or

10
6
 Gigabytes. With more and more enterprises using

computers and embracing the digital age, more and more

information is starting to get digitized and the volume of

data published and stored is increasing with each passing

day.

Thus we are offering a system for easy retrieval,

manipulation and storage of data. We have used multiple

commodity machines for the processing of data.

II. LITERATURE SURVEY

Map-Reduce style of computation is used for processing

huge amount of data and is highly parallelized. In [1],

authors have addressed the need of a system to manage the

exponentially growing data. Hadoop provides a framework

to process large amount of data in parallel style. In [2],

authors have focused on basic usability of map and reduce

function. It explains how the key value pair is generated

and term frequency is generated. [3] mainly discusses on

Hadoop framework and the HDFS.HDFS is very large file

system which uses commodity machines and is highly fault

tolerant.[4] explains the evaluation of running the map-

reduce algorithm. Removing the stop-words from the input

file increases the efficiency of the algorithm as the number

of tuples emitted from the mapper are reduced.

III. SYSTEM DESIGN

Fig. 1. The architecture overall system

I

mailto:pratikthakkar11@gmail.com
mailto:thakresaurabh009@gmail.com
mailto:prakashthete777@gmail.com
mailto:ajinkyawani@gmail.com
mailto:ddgatade.scoe@sinhgad.edu

Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 99

A. Map-Reduce Functions

In our system, we have used four commodity machines.

Client uploads the input file to be stored in the cluster. The

Map-Reduce functions derive the keyword frequency of

terms in the file.

The large amount of input data is divided into n no. of splits

of 64 MB blocks. The copies of data are stored in racks.

There is one master (Namenode) in the cluster which

assigns the tasks to the idle workers(machines other than

the master i.e. Datanode)

The workers (Datanodes) parse the key-value pair and

assigned it to the user defined map function also store in the

memory.

The locations of the key-value pair in the memory is passed

back to the master which assigns these locations to the

reduce workers.

The reduce workers read the buffered data from the local

memory of map workers and sort intermediate key values

to group together the same key values.

 Reduce workers pass the keys and its intermediate value

pairs to the reduce function.

When the map and reduce functions are completed, the

master wakes up user program.

B. Cluster Formation

The user program reads the top five keywords from the

output file which contains the word-count of the input file.

Each cluster is recognized by its signature keyword set. The

top keywords of a file are matched with the keyword set of

each Cluster. If the keywords are matched with a certain

cluster, then that file is stored in that cluster.

 If the top keywords of the file do not match with any

keyword set, then a new cluster is formed with signature

keyword set as the top keywords of the input file.

IV. FUNCTIONAL UNITS

A. User Input:

The user uploads the input data which is to be stored in a

cluster.

B. Input Data Block Distribution

If large size of input is uploaded, then it is split into blocks

of 64 MB. Then these blocks are distributed by the master

for Map-Reduce job.

C. Stop-Word Cleaning:

Words which are not related to particular files (i.e. stop-

word) e.g. am, is, was, there, here etc. are removed for

keyword identification phase.

D. Keyword Identification:

Maximum time occurring words except stock-word are

considered as keywords of a particular file. These are useful

for an identifying the type of file.

E. Cluster Identification:

Keywords of a current file is compared with a keyword of

an existing cluster and depending on this cluster for file

storage is decided. Maximum keyword matched cluster is

selected for a storage.

F. Effective Storage:

The data files are stored depending on the content of the

file. Files with the same contents are placed under one

cluster on commodity machine, so in case of retrieval it’s

much easier to retrieve same data from same source rather

than from different sources.

Fig. 2. The functional blocks of the system

V. MATHEMATICAL MODEL

1) Let the I/p of the system be the files to be uploaded,

Let I= {f1, f2, f3...}

2) The files are stored in the node cluster,

C= {C1, C2, C3…}

3) The function for clusters and their signature keyword set

is, Ckey(i)=K1, K2, K3,..

Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 100

Fig. 3. Mapping of files to cluster

Explanation: Based on the Corresponding match of

keyword to its cluster the particular file is stored to that

particular cluster

Fig. 4. Mapping keywords of files to Cluster

Explanation: This Mapping facilitates keyword match

corresponding to its true identity of cluster.

Fig. 5. Cluster storage on different machines

Explanation: This mapping shows storage of clusters on the

nodes.

4) Function to map files to the cluster,

 m(fi)=Ci

This function distributes 64MB data chunks to the data

nodes free for load bearing

5) Function for clean files with removed stock words,

Mc (fi) =fi
’
 (Where fi

’
 is a cleaned file, obtained by

removing stock words like a, an, the, is etc.) This function

cleans files for stop-word comparing it with standard

stock_base(database) .

6) Now we find key value pair from the map function,

Mwc(fi
’
)

 (Where V is a vector and V= {(word1, count1), (word2,

count2),(word3,count3)})

It finds the frequency of the words from the input file.

7) We have to find the most commonly occurring word

from the above function, Mtop(V)=K,

 K is high frequency keyword,

K= {keyword1, keyword2, keyword3, keyword4,

keyword5,…}, Let count of keywords be,

keyword1->count1,

keyword2-> count2,

If (count1>count2)

Then Max (counti) =top5 (count1, word1)

Selecting top five maximum frequency keywords from the

vector as key identifier’s for the file.

8) Let Cki is our key under consideration, Comparing this

key with our set of Keywords,

If(Mcompare(K,Cki)=NULL)

Fcreate(C)=CUCn+1;

Ckey(na1)=Cki Else

 O= {Ci}

(Putting file in the cluster Ci)

Comparing keywords with existing cluster keywords, for

true place the file into identified cluster and for no match

new cluster will be created and file is stored into it.

The files frequency keywords would be set as clusters

identified keywords.

VI. RESULTS AND CONCLUSION

We present an algorithm based on Map-Reduce framework

which will create document cluster based on content

similarity of the documents. The documents which are

based on related topic or same topic will be together in one

cluster. Thus the final output will be consisting of multiple

clusters each with its set of keywords. We are offering

certain benefits like easy data retrieval and its effective

storage.

Volume III, Issue V, May 2014 IJLTEMAS ISSN 2278 - 2540

www.ijltemas.in Page 101

Fig. 6. It shows the time required for file storage for varying file size.

The above graph shows time required for the operation for

variable input data size. This graph shows result when our

algorithm is running on a single node. When the data size is

more than 64 MB, it gets divided in blocks of 64 MB, and

for this splitting some time is required. Thus, the graph

shows little elevation after 64 MB data size for both the

lines. The blue line indicates the time required for standard

WordCount program. WordCount is the Map-Reduce job

which finds the keyword frequency. The red line shows the

graph for our system. Cluster Identification and Cluster

storage takes little quantity of time for document storage.

So, with some more amount of time (after the keyword

frequency calculation is done), the document can be placed

in a proper cluster. Thus effective storage and retrieval can

be achieved.

REFERENCES

[1] Aditya B. Patel, Manashvi Birla, Ushma Nair, (2012).

Addressing Big Data Problem Using Hadoop and Map-

Reduce.

[2] Jeffrey Dean and Sanjay Ghemawat. Map

reduce,”Simplified Data Processing on Large Clusters”

[3] Kala Karun A., Chitharanjan K., (2013). A Review On

Hadoop –HDFS Infrastructure Extension.

[4] Tamer Elsayed, Jimmy Lin, and Douglas W.

Oard.,(2008). Pairwise Document Similarity in Large

Collections with Map-Reduce.

