
Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 93

“A Paper on Modified Round Robin Algorithm”

Neha Mittal
1
, Khushbu Garg

2
, Ashish Ameria

3

1,2
Arya College of Engineering & I.T, Jaipur, Rajasthan

3
JECRC UDML College of Engineering, Jaipur, Rajasthan

Abstract: CPU scheduling algorithms are the main factor for

performance of multitasking operating system. Where CPU is

the main computer resource and round robin algorithm is

mainly used as a CPU scheduling algorithm. This is the

drawbacks like more perspective switches, higher average

waiting time, and higher turnaround time of Simple Round

Robin Scheduling algorithm which quantum repeatedly selecting

according to the no of processes by arranging a processes in

rising order.

 Based on the experiments and calculation that in this thesis the

new modified algorithm solve the fix time quantum problem

which considered a challenge for round robin algorithm. The use

of this scheduling algorithm increased the performance and

constancy of the operating system, which means that the system

is who will adapt itself to the requirements Robin Algorithm ,

This reduces the drawbacks like more is used for the time

sharing system In this thesis a new proposed variant of this

algorithm presented, elaborate in detail, tested and verified. The

new proposed algorithm called Modified Round Robin based on

a new method called modified time quantum; the concept of this

approach is to make the time context switches higher average

waiting time, and higher turnaround time of Simple Round

Robin Scheduling algorithm which is used for the time sharing

system. This is used for high throughput of the system. When

throughput is high then the system performance will increase.

This research is useful in the future with the arrival time of the

jobs.

Keywords: Central Processing Unit, scheduling, round-robin, time

quantum, multitasking, throughput

I. INTRODUCTION

PU scheduling is a essential operating is central to

operating system design. When there is more than one

process in the ready system task; therefore its scheduling

queue or job pool waiting its turn to be assigned to the CPU,

the operating system must decide through the scheduler the

order of execution. Allocating CPU to a process requires

careful consciousness to assure justice and avoid process

starvation for CPU. Scheduling decision try to reduce the

following: turnaround time, response time and average

waiting time for processes and the number of context

switches. Scheduling algorithms are the method by which a

resource is allocated to a process or task.

CPU scheduling is the method by which a resource is

allocated to a process or task and executes in different ways.

For scheduling many scheduling algorithms are used like

FCFS, SJF, RR, and Priority scheduling algorithm. The

processes are scheduled according to the given burst time,

arrival time and priority. The execution of processes used

number of resources such as Memory, CPU etc. [6] .A

scheduling decision refers to the theory of selecting the next

process for execution. During each scheduling decision, a

context switch occurs, meaning that the current process will

stop its execution and put back to the ready queue and another

process will be dispatched. We define the scheduling

overhead cost when more context switches and all process are

switching the finally CPU performance will be decreased.

Scheduling algorithms are widely used in communications

networks and in operating systems to allocate resources to

competing tasks. This research investigates several well

known CPU scheduling algorithms by means of analysis and

compares their concert under different workloads.

Basic Concepts: Scheduling Criteria

Different CPU scheduling algorithms have different properties

and may favor one class of processes over another. In

choosing which algorithm to use in a particular situation, we

must consider the different properties of the various

algorithms.

CPU Utilization: We want to keep the CPU as busy as

possible. CPU utilization may range from 0 to 100 percent. In

a real system, it should range from 40 percent (for a lightly

loaded system) to 90 percent (for a heavily used system).

Throughput: If the CPU is busy executing process, then work

is being done. One calculate of work is the number of

processes that are completed per time unit, called throughput.

For long processes, this rate may be one process per hour; for

short transactions, throughput might be 10 processes per

second.

Turnaround time: From the point of view of a particular

process, the important criterion is how long it takes to execute

that process. The interval from the time of submission of a

process to the time of completion is the turnaround time.

Turnaround time is the sum of the periods spent waiting to get

into memory, waiting in the ready queue, executing on the

CPU, and doing I/O.

Waiting Time: The CPU scheduling algorithm does not affect

the amount of time during which a procedure executes or does

I/O; it affects only the amount of time that a process spends

C

Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 94

waiting in the prepared queue. Waiting time is the sum of the

periods spent waiting in the ready queue.

Response time: In an interactive system, turnaround time may

not be the best criterion. Often, a process can produce some

output fairly easy, and can continue computing new results

while earlier results are being output to the user. Thus, another

measure is the time from the submission of a request until the

first response is produced. This measure, called response time,

is the time that it takes to start responding, but not the time

that it takes to output that response. The turnaround time is

generally incomplete by the speed of output device.

II. MOTIVATION

The aim of process scheduling is to assign the processor or

processors to the put of processes in a way that meets system

and user objectives such as response time, throughput or

processor efficiency. Various scheduling algorithms have

been future; many are well understood. This algorithm focuses

to enable a quantitative comparison of the performance of the

Round Robin algorithm under a range of workloads.

Process execution consists of CPU execution (CPU Burst) and

I/O waits (I/O Burst)

Purpose and Scope of the Study

Keeping above mentioned inspiration in mind, we are trying

to develop a new algorithm to find resourceful time slice so

that our average waiting time and average turnaround time

will reduce. We do so by arranging all the processes

ascending order of their burst time and scheduled them

according to shortest job first.

FIG 1.1: Histogram of CPU Burst times

CPU Scheduler select a process from the ready queue when

the current process releases the CPU, Since the scheduler

executes very regularly, it must be Very fast to avoid wasting

CPU time . Very efficient (i.e., the problem of selecting a

CPU algorithm for a particular system. Note that all the PCBs

(Process Control Blocks) in the ready queue represent the

processes in CPU burst state.

 Round Robin Algorithm

The round-robin (RR) scheduling algorithm is designed

especially for time-sharing systems. It is similar to FCFS

scheduling, but pre-emption is further to switch between

processes.

A small unit of time, called a time quantum or time slice, is

distinct. A time quantum is generally from 10 to 100

milliseconds. The ready queue is treated as a circular queue.

To implement RR scheduling, we keep the ready queue as a

FIFO queue of processes. New processes are added to the tail

of the ready queue. The CPU scheduler picks the first process

from the ready queue, sets a timer to interrupt after 1 time

quantum, and dispatches the process. The process may have a

CPU burst of less than 1 time quantum. In this case, the

process itself will discharge the CPU voluntarily. The

scheduler will then proceed to the next process in the ready

queue. Otherwise, if the CPU burst of the currently running

process is longer than 1 time quantum. the timer will go off

and will cause an interrupt to the OS.

A context switch will be executed, and the process will be put

at the tail of the ready queue. The CPU scheduler will then

select the next process in the prepared queue.

Flow Chart: Round Robin Algorithm

Fig 2.1 Flow chart or Round Robin Algorithm

Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 95

Example RR Algorithm:

We Assume five processes arriving at time = 0, with

increasing burst time (P1 = 14, P2 =45, P3 = 36, P4 = 25, P5=

77) as shown in Table 2.1. Figure-2.2 shows Gantt chart for

simple round robin algorithm

Table 2.1 Example of Round Robin Algorithm

Processes
Arrival
Time

Burst
Time

P1 0 14

P2 0 45

P3 0 36

P4 0 25

P5 0 77

P1 P2 P3 P4 P5 P2 P3 P5 P5 P5

 0 14 39 64 89 114 134 145 170 195

Figure: 2.2 Gantt chart for simple round robin Algorithm

AWT = 70.2

TAT = 109.6

CS = 7

III. INTRODUCTION: MODIFIED ROUND ROBIN

ALGORITHM

 In our proposed algorithm, the number of processes is

residing in the ready queue, we assume their arrival time is

assigned to zero and burst times are allocated to the CPU. The

burst time and the number of processes (n) are accepted as

input. Now first of all we arrange all processes in increasing

order according to their given burst time and choose modified

time slice according some conditions. The modified time slice

will be depends on the inputting number of processes burst

time. If number of processes are vary then customized time

slice will be vary.

In this algorithm some number of processes and their burst

time are given. And we have to find out their context

switching time their turnaround time and their waiting time

In modified round robin algorithm shortest job first and round

robin algorithms are mixed up. So that this algorithm can take

the advantages of both algorithm. And execute more

efficiently

A) STEPS FOR MODIFIED ROUND ROBIN ALGORITHM

Step 1: first check the status of ready queue

Step 2: change the status of all the processes to ready state

Step 3: Arrange all the processes in increasing order. or sort

processes according to their burst time

Step 4: check whether ready queue is null or not

Step 5: If not than calculate modified time quantum

(i) Find whether the no of processes are even or odd

If no of processes are odd

Than modified time slice would be burst time of mid

process

Else

Modified time slice would be the average time of

burst time of all processes

Step 6: assign modified time quantum to every process

Step 7 : if burst time of process is smaller and equal to time

quantum than process complete its execution s

 Otherwise Repeat cycle and give the time quantum to

each process

Step 8: repeat step 6 until all processes does not complete

their execution

B) PSEUDO CODE FOR MODIFIED RR

1. Check whether ready queue status

2 All the processes are assigned into the ready queue, if ready

queue is empty

3. All the processes are set in increasing order according to

their burst time. Lower burst time process gets higher priority

and larger burst time process get lower priority.

4. While (ready queue! = NULL)

5. Calculate modified time quantum:

If (No. of process%2= = 0)

MTQ = average CPU burst time of all processes

Else

MTQ = mid process burst time

6. Assign modified time quantum to the jth process:

Px<- MTQ

x=x+1

7. If (x< Number of process) then go to step 6.

8. If a new process is arrived update the ready queue, go to

step 2.

9. End of While

10. Calculate average waiting time, turnaround time, context

switches.

11. End

STEPS FOR MODIFIED ROUND ROBIN ALGORITHM

Step 1: first check the status of ready queue

Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 96

Step 2: change the status of all the processes to ready state

Step 3: Arrange all the processes in increasing order. or sort

processes according to their burst time

Step 4: check whether ready queue is null or not

Step 5: If not than calculate modified time quantum

(i) Find whether the no of processes are even or odd

If no of processes are odd

C) Flow Chart of MRR Algorithm

Fig 3.1 Flow chart of modified round robin algorithm

D) Mathematical implementation of MRR Algorithm

If number of processes are odd:

a) According RR mechanism for odd no of processes

We Assume five processes arriving at time = 0, with

increasing burst time (P1 = 14, P2 =45, P3 = 36, P4 = 25, P5=

77) as shown in Table 3.1. Figure 3.2 shows Gantt chart for

simple round robin algorithm algorithms

Example of SRR for odd no of processes

Table 3.1 Example of round robin algorithm for odd no of

processes

Processes
Arrival

Time
Burst Time

P1 0 14

P2 0 45

P3 0 36

P4 0 25

P5 0 77

Gantt chart for simple round robin algorithm

P1 P2 P3 P4 P5 P2 P3 P5 P5

 0 14 39 64 89 114 134 145 170 195

197

Figure: 3.2 Gantt chart for simple round robin algorithm

AWT = 70.2

TAT = 109.6

CS = 7

b) According MRR mechanism for odd no of processes:

First of all we arrange the processes in ready queue according

their given burst time in increasing order that is P1=14,

P4=25, P3=36, P2=45 and P5=77 (as shown in table no 3.1)

and after that we choosing the time quantum according my

algorithm, the time quantum is 36. All the processes have

arrival time 0. Figure-3.3 shows Gantt chart for Modified

round robin algorithm algorithms

Gantt chart for MRR

P1 P4 P3 P2 P5 P2 P5 P5

Figure: 3.3: Gantt chart for MRR for even no of processes

Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 97

AWT = 56.8

TAT = 96.2

CS = 6

c) Comparison of SRR and MRR for odd no. of processes

Table 3.2: Comparison of SRR and MRR for odd no of

processes:

Algorithm STS CS AWT TAT Throughput

Simple RR 25 7 70.2 109.6 Low

Modified

RR
36 6 56.8 96.2 High

2) If number of processes are even:

We Assume four processes arriving at time = 0, with random

burst time (P1 = 20, P2 =32, P3 = 9, P4 = 19) with time

quantum =16 as shown in Table 3.3. The Figure:3.4 & 3.5 the

output using RR algorithm and Modified RR algorithm.

According RR mechanism

Table 3.3 example of Simple round robin algorithm for even

no. of processes

Process Arrival

Time
Burst Time

(ms)

P1 0 20

P2 0 32

P3 0 9

P4 0 19

Figure: 3.4 Gantt chart for SRR algorithm for even no. of processes

P1 P2 P3 P4 P1 P2 P4

 0 16 32 41 57 61 77 80

AWT = 44.78

TAT = 64.7

CS = 6

According Modified RR mechanism:

First of all I arrange the processes in ready queue according

their given burst time in increasing order that is P3=9, P4=19,

P1=20 and P2=32 and after that we choosing the time

quantum according, Modified RR algorithm, the time

quantum is the average processes burst time if the given

processes are even, that is 20.

P3 P4 P1 P2 P2

0 9 28 48 68 80

Figure 3.5 Gantt chart for Modified RR for even no of processes

AWT = 21.2

TAT = 41.2

CS = 3

TABLE: 3.4 COMPARISON OF SRR AND MRR FOR EVEN NO. OF

PROCESSES

Algorithm STS CS AWT TAT Throughput

Simple RR 16 6 44.78 64.2 Low

Modified 20 3 21.2 41.2 High

IV) Performance Matrix

A) For odd no of processes:

Fig 4.1 performance analysis of SRR and MRR algorithm for odd no of

processes

Volume IV, Issue XI, November 2015 IJLTEMAS ISSN 2278 – 2540

www.ijltemas.in Page 98

Performance Matrix

B) For EVEN no of processes

Fig 4.2 performance analysis of SRR and MRR algorithm for odd

no of processes

IV. CONCLUSIONS AND FUTURE WORK

The problem of scheduling is which computer process run at

what time on the central processing unit (CPU) or the

processor is explored. Some CPU scheduling algorithms has

been briefed

Since we expect the system to work for the user process,

naturally it will be better, if it is very efficient. To make better

use of the resources we go for scheduling so that work takes

place in a controlled fashion. In simple words, the objective of

Scheduling is to optimize the system performance. A system

designer must consider a variety of factors when developing a

scheduling discipline, such as what type of systems and what

are user's needs. Depending on the system, the user and

designer might expect the scheduler to Better Rationing of

Resources for better control and co-ordination

 • Fair Treatment to all the processes Provide time slice for

every process.

• Efficient utilization of the CPU

• Increase the level of CPU utilization, thereby providing a

very high degree of Multiprogramming

• Achieve a Balance in the usage of resources.

Provide good response, A system can accomplish these goals

in several ways. The scheduler can prevent indefinite

postponement of processes through aging. The scheduler can

upgrade throughput by favoring processes whose requests can

be satisfied quickly, or whose completion frees other

processes to run.

It is concluded from the above experiments that is proposed

algorithm performs better than the previous developed

algorithm in terms of performance metrics such as average

waiting time, average turnaround time and total number of

context switches and the time and space complexity is

reduced.

Future work can be enhanced to implement the proposed

algorithm for adaptive and hard real time system

REFERENCES

[1]. Department of Operations Research, University of Aarhus, Ny

Munkegade, Building 1530, 8000 Aarhus C, Denmark Tepper

School of Business, Carnegie Mellon University, Pittsburgh PA

15213, USA “Round robin scheduling - a survey” Rasmus V.
Rasmussen and Michael A. Trick

[2]. I.J. Information Technology and Computer Science, 2012, 10, 67-

73 Published Online September 2012 in MECS (http://www.mecs-
press.org/)

[3]. DOI: 10.5815/ijitcs.2012.10.08” Determining the Optimum Time

Quantum Value In Round Robin Process Scheduling Method”
[4]. http://siber.cankaya.edu.tr/OperatingSystems/ceng328/node125.ht

ml.

[5]. Silberchatz, Galvin and Gagne ,2003 .operating systems
concepts,(6thedn, John Wiley and Sons)

[6]. Seltzer, M P. Chen and J outerhout, 1990.Disk scheduling

revisited in USENIX. Winter technical conference. Shamim H
M 1998. Operating system, DCSA-2302.

[7]. School of sciences and Technology. Bangladesh open university

Gazipur 1705
[8]. D. M. Dhamdhere Operating Systems A Concept Based

Approach , Second edition Tata McGraw-Hill, 2006

[9]. .Operating Systems Sibsankar Haldar 2009 , Pearson Education,
India

[10]. Department of computer science and engineering, Barla,

sambalpur, orrisa, India ”Design and Performance Evaluation of a
New Proposed Shorest Remaining Burst Round Robin(SRBRR)

Scheduling Algorithm ” Prof. Rakesh Mohanty, Prof. H.s Behera.

[11]. Yaashuwanth .C & R. Ramesh” Inteligent time slice for round
robin in real time operating system, IJRRAS 2 (2), February 2010.

0

10

20

30

40

50

60

70

CS AWT TAT

Simple RR

Modified RR

http://www.mecs-press.org/
http://www.mecs-press.org/

