Solution of Linear Partial Integro-Differential Equations using Kamal Transform

Anjana Rani Gupta ¹, Sudhanshu Aggarwal ², Deeksha Agrawal ³

¹Professor, Department of Mathematics, Noida Institute of Engineering & Technology, Greater Noida-201306, U.P., India
²Assistant Professor, Department of Mathematics, National P.G. College Barhalaunj, Gorakhpur-273402, U.P., India
³Assistant Professor, Department of Mathematics, Gwalior Maharaja Mansingh College, Gwalior-474003, M.P., India

Abstract: In this paper, we used Kamal transform for solving linear partial integro-differential equations. The technique is described and illustrated with application. This technique gives the exact results using very less computational work.

Keywords: Linear partial integro-differential equation, Kamal transform, Convolution theorem, Inverse Kamal transform.

I. INTRODUCTION


The general linear partial integro-differential equation is given by

\[ \sum_{i=0}^{m} a_i \frac{\partial^i u(x,t)}{\partial t^i} + \sum_{i=0}^{n} b_i \frac{\partial^i u(x,t)}{\partial x^i} + cu 
+ \sum_{i=0}^{r} d_i \int_{0}^{t} k_i (t,s) \frac{\partial^i u(x,s)}{\partial x^i} + f(x,t) = 0 \ldots \ldots \ldots (1) \]

(with prescribed conditions), where the kernels \( k_i(t,s) \) and \( f(x,t) \) are known functions and \( a_i, b_i, c \) and \( d_i \) are constants or functions of \( x \).

The Kamal transform of the function \( F(t) \) is defined as [6]:

\[ K\{F(t)\} = \int_{0}^{\infty} F(t)e^{-at} \, dt \]

\[ = G(v), t \geq 0, k_1 \leq v \leq k_2 \ldots \ldots \ldots (2) \]

Where \( K \) is Kamal transform operator.

The Kamal transform of the function \( F(t) \) exist if \( F(t) \) is piecewise continuous and of exponential order. These conditions are only sufficient conditions for the existence of Kamal transform of the function \( F(t) \).


The object of the present study is to determine exact solutions for linear partial integro-differential equations using Mahgoub transform without large computational work.

II. LINEARITY PROPERTY OF KAMAL TRANSFORMS

\[ K\{aF(t) + bG(t)\} = aK\{F(t)\} + bK\{G(t)\} \]

Where \( a, b \) are arbitrary constants.
III. KAMAL TRANSFORM OF SOME ELEMENTARY FUNCTIONS [6, 8]:

<table>
<thead>
<tr>
<th>S.N.</th>
<th>(F(t))</th>
<th>(K{F(t)} = G(v))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>(v)</td>
</tr>
<tr>
<td>2.</td>
<td>(t)</td>
<td>(v^2)</td>
</tr>
<tr>
<td>3.</td>
<td>(t^2)</td>
<td>(2! v^3)</td>
</tr>
<tr>
<td>4.</td>
<td>(t^n, n \in N)</td>
<td>(n! v^{n+1})</td>
</tr>
<tr>
<td>5.</td>
<td>(e^{at})</td>
<td>(\frac{v}{1 - av})</td>
</tr>
<tr>
<td>6.</td>
<td>(\sin at)</td>
<td>(\frac{av^2}{1 + a^2 v^2})</td>
</tr>
<tr>
<td>7.</td>
<td>(\cos at)</td>
<td>(\frac{v}{1 + a^2 v^2})</td>
</tr>
<tr>
<td>8.</td>
<td>(\sinh t)</td>
<td>(\frac{av^2}{1 - a^2 v^2})</td>
</tr>
<tr>
<td>9.</td>
<td>(\cosh t)</td>
<td>(\frac{v}{1 - a^2 v^2})</td>
</tr>
</tbody>
</table>

IV. KAMAL TRANSFORM OF SOME PARTIAL DERIVATIVES OF THE FUNCTION \(u(x, t)\) [7]:

If \(K\{u(x, t)\} = G(x, v)\) then

(a) \(K \left\{ \frac{\partial u(x, t)}{\partial t} \right\} = \frac{1}{v} G(x, v) - u(x, 0) \ldots (3)\)

(b) \(K \left\{ \frac{\partial^2 u(x, t)}{\partial t^2} \right\} = \frac{1}{v^2} G(x, v) - \frac{1}{v} u(x, 0)\)

(c) \(K \left\{ \frac{\partial^n u(x, t)}{\partial t^n} \right\} = \frac{1}{v^n} G(x, v) - \frac{1}{v^{n-1}} u(x, 0)\)

\[- \frac{1}{v^n - 2} u_t(x, 0) - \ldots - u_{t(n-1)}(x, 0) \ldots (5)\]

(d) \(K \left\{ \frac{\partial u(x, t)}{\partial x} \right\} = \frac{dG(x, v)}{dx} \ldots \ldots \ldots (6)\)

(e) \(K \left\{ \frac{\partial^2 u(x, t)}{\partial x^2} \right\} = \frac{d^2G(x, v)}{dx^2} \ldots \ldots \ldots (7)\)

(f) \(K \left\{ \frac{\partial^n u(x, t)}{\partial x^n} \right\} = \frac{d^n G(x, v)}{dx^n} \ldots \ldots \ldots (8)\)

V. CONVOLUTION OF TWO FUNCTIONS [14]:

Convolution of two functions \(F(t)\) and \(H(t)\) is denoted by \(F(t) \ast H(t)\) and it is defined by

\[F(t) \ast H(t) = F \ast H = \int_0^t F(x)H(t - x)\, dx\]

\[= \int_0^t H(x)F(t - x)\, dx\]

VI. CONVOLUTION THEOREM FOR KAMAL TRANSFORMS [8]:

If \(K\{F(t)\} = G(v)\) and \(K\{H(t)\} = I(v)\) then

\[K\{F(t) \ast H(t)\} = K\{F(t)\}K\{H(t)\} = G(v)I(v)\]

VII. INVERSE KAMAL TRANSFORMS

If \(K\{F(t)\} = G(v)\) then \(F(t)\) is called the inverse Kamal transform of \(G(v)\) and mathematically it is defined as

\[F(t) = K^{-1}\{G(v)\}\]

Where \(K^{-1}\) is the inverse Kamal transform operator.

VIII. INVERSE KAMAL TRANSFORM OF SOME ELEMENTARY FUNCTIONS

<table>
<thead>
<tr>
<th>S.N.</th>
<th>(G(v))</th>
<th>(F(t) = K^{-1}{G(v)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(v)</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>(v^2)</td>
<td>(t)</td>
</tr>
<tr>
<td>3.</td>
<td>(v^3)</td>
<td>(\frac{t^2}{2!})</td>
</tr>
<tr>
<td>4.</td>
<td>(v^{n+1}), (n \in N)</td>
<td>(\frac{t^n}{n!})</td>
</tr>
<tr>
<td>5.</td>
<td>(\frac{v}{1 - av})</td>
<td>(e^{at})</td>
</tr>
<tr>
<td>6.</td>
<td>(\frac{v^2}{1 + a^2 v^2})</td>
<td>(\sin at)</td>
</tr>
<tr>
<td>7.</td>
<td>(\frac{v}{1 + a^2 v^2})</td>
<td>(\cos at)</td>
</tr>
<tr>
<td>8.</td>
<td>(\frac{v^2}{1 - a^2 v^2})</td>
<td>(\sinh at)</td>
</tr>
<tr>
<td>9.</td>
<td>(\frac{v}{1 - a^2 v^2})</td>
<td>(\cosh at)</td>
</tr>
</tbody>
</table>

IX. KAMAL TRANSFORM FOR LINEAR PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS:

In this section, we present Kamal transform for solving linear partial integro-differential equations given by (1). In this work, we will assume that the kernels \(k_i(t, s)\) of (1) are difference kernel that can be expressed by difference \((t - s)\). The linear partial integro-differential equation (1) can thus be expressed as

\[
\sum_{i=0}^{m} a_i \frac{\partial^i u(x, t)}{\partial t^i} + \sum_{i=0}^{n} b_i \frac{\partial^i u(x, t)}{\partial x^i} + cu + \sum_{i=0}^{m} d_i \int_0^t k_i(t - s) \frac{\partial^i u(x, s)}{\partial x^i} + f(x, t)
\]

\[= 0 \ldots \ldots \ldots (9)\]
Applying the Kamal transform to both sides of (9), we have
\[ \sum_{i=0}^{m} a_i K \left\{ \frac{\partial^i u(x, t)}{\partial t^i} \right\} + \sum_{r=0}^{n} b_r K \left\{ \frac{\partial^r u(x, t)}{\partial x^r} \right\} + cK[u] \]
\[ = \sum_{i=0}^{m} a_i \int_0^t k_i (t-s) \frac{\partial^i u(x,s)}{\partial x^i} ds + K\{f(x,t)\} = 0 \ldots \ldoto


AUTHORS

Dr. Anjana Rani Gupta is working as Professor and Head at NIET. She has completed her Ph.D degree from IIT Roorkee. She has more than 20 years of teaching experience at IIT Roorkee and various Engineering Colleges affiliated to UPTU. She has published many research papers in reputed journals and also a member of different Mathematical Societies.

Sudhanshu Aggarwal received his M.Sc. degree from M.S. College, Saharanpur in 2007. He has also qualified CSIR NET examination (June-2010, June-2012, June-2013, June-2014 & June-2015) in Mathematical Sciences. He is working as an Assistant Professor in National P.G. College Barhalganj Gorakhpur. He is equipped with an extraordinary caliber and appreciable academic potency. He has around ten years of teaching experience at various engineering colleges affiliated to AKTU. His fields of interest include Integral Transform Methods, Differential and Partial Differential Equations, Integral Equations and Number Theory. He has published many research papers in national and international journals.

Deeksha Agrawal received her M.Sc. from Jiwaji University Gwalior in 2014. She is working as an Assistant Professor in Gwalior Maharaja Mansingh College, Gwalior since 2015. Her fields of interest include Integral Transform Methods, Differential and Partial Differential Equations.