INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)
ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume XIV, Issue III, March 2025
www.ijltemas.in Page 593
13. Wu, D.; Lim, B.X.H.; Seah,I.; Xie, S.; Jaeger, J.E.; Symons, R.K.;Heffernan, A.L.; Curren, E.E.M.;Leong, S.C.Y.; Riau,
A.K.; et al.(2023), Impact of Microplastics on the OcularSurface. Int. J. Mol. Sci., 24,
3928.https://doi.org/10.3390/ijms24043928
14. Kuttykattil, A., Raju, S., Vanka, K. S., Bhagwat, G., Carbery, M., Vincent, S. G. T., Raja, S., & Palanisami, T. (2022),
Consuming microplastics? Investigation of commercial salts as a source of microplastics (MPs) in diet. Environmental
Science and Pollution Research.https://doi.org/10.1007/s11356-022-22101-0
15. Frère, L.; Paul-Pont, I.; Moreau, J.; Soudant, P.; Lambert, C.; Huvet, A.; Rinnert, E. (2016), A semi-automated Raman
micro-spectroscopy method for morphological and chemical characterizations of microplastic litter. Mar. Pollut. Bull.,113,
461–468.
16. Hernandez LM, Xu EG, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N (2019), Plastic Teabags Release Billions of
Microparticles and Nanoparticles into Tea, Environ Sci Technol. ;53(21):12300-12310. Doi: 10.1021/acs.est.9b02540.
17. Wang, Y.; Wang, Z.; Lu, X.;Zhang, H.; Jia, Z. (2023), Simulation and Characterization of Nanoplastic Dissolution under
Different Food Consumption Scenarios, Toxics,11, 550. https://doi.org/10.3390/ toxics 11070550
18. Tagg, A.S.; Sapp, M.; Harrison, J.P.; Ojeda, J.J. (2015), Analytical Chemistry, Identification and quantification of
microplastics in wastewater using focal plane Array-Based Reflectance Micro-FT-IR Imaging, Vol 87, Issue 12.
19. Hussain, K. A., Romanova, S., Okur, I., Zhang, D., Kuebler, J., Huang, X., Wang, B. Fernandez-Ballester, L., Lu, Y.,
Schubert, M., & Li, Y. (2023). Assessing the release of microplastics and nanoplastics from plastic containers and reusable
food pouches: Implications for human health. Environmental Science & Technology, 57(9), 9782–9792.
https://doi.org/10.1021/acs.est.3c01942
20. Reimann, C.; Birke, M.; Filzmoser, P. (2012), Temperature-dependent leaching of chemical elements from mineral Water
bottle materials. Appl. Geochem., 27, 1492–1498
21. EU Directive 98/83/EC of 3rd November (1998), on the quality of water intended for human consumption. Off. J., 330,
32–54.
22. Antonelis, K.; Huppert, D.; Velasquez, D.; June, J. Dungeness (2023), Crab Mortality Due to Lost Traps and a Cost–
Benefit Analysis of Trap Removal in Washington State Waters of the Salish Sea. N. Am. J. Fish. Manag, 31, 880–893.
23. Mason, S.A.; Welch, V.G.; Neratko, J. (2018), Synthetic Polymer Contamination in Bottled Water. Front. Chem., 6, 1–
17.
24. Fadare, O.O.; Okoffo, E.D.; Olasehinde, E.F. (2021), Microparticles and microplastics contamination in African table
salts. Mar. Pollut.Bull., 164, 112006.
25. Liebezeit, G.; Liebezeit, E.(2015), Origin of Synthetic Particles in Honeys. Polish J. Food Nutr. Sci., 65, 143–147.
26. Diaz-Basantes, M.F.; Conesa, J.A.; Fullana, A. (2020), Microplastics in Honey, Beer, Milk and Refreshments in Ecuador
as Emerging Contaminants. Sustainability, 12, 5514.
27. Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human
health. Current Environmental Health Reports, 5(3), 375–386. https://doi.org/10.1007/s40572-018-0206-z
28. Fisheries of the United States, Current Fishery Statistics (2015), https://www.st.nmfs.noaa.gov/ Assets/ commercial/fus/
fus15/ documents/FUS2015.pdf
29. Lusher A, Hollman P, Mendoza-Hill J. (2020), Microplastics in fisheries and aquaculture: status of knowledge on their
occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper
;(615).
30. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, et al. (2013), Microplastic ingestion by zooplankton.
Environ Sci Technol.;47(12):664655.
31. Lee K-W, Shim WJ, Kwon OY, Kang J-H. (2013), Size-dependent effects of micro polystyrene particles in the marine
copepod Tigriopus Japonicus. Environ Sci Technol.;47(19):11278–83.
32. Makhdoumi, P.; Naghshbandi, M.; Ghaderzadeh, K.; Mirzabeigi, M.; Yazdanbakhsh, A.; Hossini, H. (2021), Micro-plastic
occurrence in bottled vinegar: Qualification, quantification and human risk exposure. Process. Saf. Environ. Prot., 152,
404–413.
33. Lehner, R., Weder, C., Petri-Fink, A., & Rothen-Rutishauser, B. (2019). Emergence of Nanoplastic in the Environment
and Possible Impact on Human Health. Environmental Science & Technology, 53(4), 1748–1765.
34. Cverenkárová, K.;Valachoviˇcová, M.; Mackul’ak, T.;Žemliˇcka, L.; Bírošová, L.(2021) Microplastics in the Food Chain.
Life, 11,1349. https://doi.org/ 10.3390/life11121349
35. Green, T.R.; Fisher, J.; Stone, M.; Wroblewski, B.M.; Ingham, E. (1998) Polyethylene particles of a ’critical size’ are
necessary for the Induction of cytokines by macrophages in vitro. Biomaterials, 19, 2297–2302.
36. Veruva, S.Y.; Lanman, T.H.; Isaza, J.E.; Freeman, T.A.; Kurtz, S.M.; Steinbeck, M.J. (2017), Periprosthetic UHMWPE
Wear Debris Induces Inflammation, Vascularization and Innervation After Total Disc Replacement in the Lumbar Spine.
Clin. Orthop. Relat. Res., 475, 1369–1381.
37. Suñer, S.; Gowland, N.; Craven, R.; Joffe, R.; Emami, N.; Tipper, J.L. (2016), Ultrahigh molecular weight
polyethylene/graphene oxide nanocomposites: Wear characterization and biological response to wear particles. J. Biomed.
Mater. Res. Part B Appl. Biomater., 106, 183–190.
38. Massin, P.; Achour, S. (2017), Wear products of total hip arthroplasty: The case of polyethylene. Morphologie, 101, 1–8.
39. Shanbhag, A.; Jacobs, J.; Glant, T.; Gilbert, J.; Black, J.; Galante, J.(1994), Composition and morphology of wear debris
in failed uncemented total hip replacement. J. Bone Jt. Surgery. Br. Vol., 76, 60–67.