i, INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)

% ey ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume X1V, Issue 1V, April 2025

A Hybrid Model for The Software Development Life Cycle

Dr. Manish Kumar, Dr. Ashish Kumar Saha
Vinoba Bhave University, Hazaribag, Jharkhand-825301
DOI: https://doi.org/10.51583/IJLTEMAS.2025.140400124

Received: 29 April 2025; Accepted: 08 May 2025; Published: 24 May 2025

Abstract: This study addresses an important and critical problem in the area of information technology. The software development
life cycle, also known as development models, is the subject of software management practices that analyze software development.
The main purpose of this research is to craft a development model that meet the requirements of various system and eliminate the
defect of earlier model. This study suggests a hybrid model that incorporates elements from the five most popular development
models: waterfall, iteration, spiral, V-shaped, and extreme programming. Through some modifications, the model suggested in this
study maintains some of the characteristics and advantages of previous models. As a result, it avoids and resolves many of the
software issues that plagued previous models. Therefore, the model we have just suggested is an integrated model that applies to
most software applications and systems.

Keywords: Software Management Processes, Software Development, Development Models, Software Development Life Cycle,
Hybrid Model.

|. Introduction

The being of various system development models in software field has created a series of problems due to their different applications
and usage patterns. System engineers were the only ones who could recognize and address these problems while creating software.
The cost and effort required to develop these systems could increase due to these problems. Some of these system models lack risk
analysis and plans, and this is one of these problems. Limiting to large projects is another problem. To address the cost and effort
factors, especially in small and medium-sized projects, this study attempts to create a model that can be used for all projects
regardless of their size.

Objectives

Create a model proposal that mimics the benefits of earlier software process management models.

Implement the suggested model in a variety of projects to demonstrate its functionality and ensure its relevance.

The Rationale behind Selecting This Research Topic.

Some of the factors that influenced the choice of the research topic are detailed below:

Software engineering is considered a fundamental part of design and plays an vital role in the development and creation of programs.

The relationship of this model with the development of different software and its notable importance in the face of numerous
software engineering projects.

Examine various models to determine their advantages, disadvantages, strong point and flaw.
Build a model that integrates or combines different aspects of the strength of the previous software engineering models.
The Proposal for the Intended Model: ""hybrid model".

A software process is simplify and presented from a particular point of view in a software process model [1]. Reuse-based
development, formal systems development, evolutionary development, and waterfall model are just some of the general software
process madels. Software development models are compiled into a single model as shown in Figure (1). These models are:

1. Waterfall model
2. lteration model
3. V-shaped model
4. Spiral model

5. Extreme model

The Fundamental Hybrid Model in the context of the System Development Life Cycle (SDLC).

The main components of the systems development processes are shown in Figure 1, along with the logical order of these components
or phases, ensuring that this model is appropriate for many phases of systems development, whether small, medium, or large. These
procedures constitute the main form of the hybrid model:

www.ijltemas.in Page 1034

https://doi.org/10.51583/IJLTEMAS.2025.140400124

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume X1V, Issue 1V, April 2025

Planning: Includes organizing the activities needed to specify resources and schedules, as well as creating plans for the system
development process and other project-related information. [6]

Requirements: This phase allows us to identify three main types of requirements:
Abstract functional requirements: which articulate the functions of the system in an idealized framework?
System properties: which describe the non-functional requirements that the system must satisfy.

Undesirable characteristics: which specify behaviours that are not acceptable within the system. It is essential that these
requirements effectively define and support the organization's overall goals for the system. [7]

Design: This is a multifaceted process with several phases, which includes four essential elements:
Data structuring

Software development

Data representation

Detailed processes (algorithms)

The specifications of the design process are converted into a format suitable for the software, allowing its quality to be assessed
before the next phase, called "Implementation”, begins. During this phase, the design is carefully documented for integration into
the software repository.

Implementation: This phase involves converting the project into a computer-comprehensible format. It also organizes the system
components using one of the programming languages according to the established plan.

Integration Development: This phase aims to connect the different components of a system into a coherent unit, thus creating a
formal system. During this phase the different parts must be integrated with each other without damaging the rest of the system
components.

Deployment: This is the process of delivering the complete system to the client for operational use, helping to identify problems
that may arise during its initial application.

Testing: The testing phase begins with the initial phase of any system, namely “planning”. It includes test planning, requirements
gathering, design evaluation, representation and integration.

Maintenance: Once the software is delivered to the client, it may undergo various modifications. These changes are usually
motivated by difficulties encountered, the need to adapt to changes in the external environment or requests from clients to improve
performance or functionality.

Risk Analysis: This phase includes all development phases, from planning to maintenance. It identifies all anticipated risks and
recommends the actions necessary to mitigate them.

The development of medium and large systems begins with a planning phase, during which the essential requirements of the system
such as personnel, time, materials and costs are established. In contrast, small projects typically begin with the design or
programming phase, during which the appropriateness of the proposed plan for the project is assessed. This phase also serves to
identify and assess project risks associated with schedule, human resources and materials considerations. Next comes the
requirements gathering and analysis phase, during which requirements are gathered through customer participation and are then
analyzed to determine their conformity with the system objectives, taking into account existing risks. The requirements phase is
followed by the design phase, which focuses on creating preliminary designs through algorithms and diagrams that illustrate the
development of the system. This design is then tested to ensure that it meets the stated requirements. Next comes the system
representation phase, which involves implementing the project for the computer devices according to the specifications described
in the project. In addition, the programming components are tested to confirm their proper functioning. The integration phase
follows the system representation, in which all implemented programming components are integrated and tested for two
fundamental purposes: to verify the absence of defects and to ensure compliance with all system requirements. This phase must be
completely completed before deploying the system for customer use. The final phase involves the deployment and installation of
the system on customer devices, which is critical and must be carried out in accordance with the established plan and risk analysis.

[11[7]
The hybrid model is distinguished by its suitability for small, medium and large installations, as well as its inherent flexibility.

Within this framework, the process can be initiated at any stage, including planning, requirements gathering and analysis, design
or programming representation, depending on the specific type and complexity of the system.

www.ijltemas.in Page 1035

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume X1V, Issue 1V, April 2025

Planning

Requirements

Risk Analvss

Design

e — Implemeniation

Testing

Intcgration
Develonment

Deployvment

4

Maintenance

Fig. (1): The Primary of Hybrid Model in SDLC

An analysis of the Hybrid Model in the context of the System Development Life Cycle.

The complete illustration of the hybrid model sheds light on its operational framework for various system development
methodologies, as shown in Figure 2. This illustration describes the relationship between the planning phases and the phase
dedicated to assessing potential risks associated with the project. Further evaluate the plan based on the identified risks.
Furthermore, the figure highlights the interconnections between the planning and risk analysis phases and those involved in
requirements gathering, design, implementation and finally integration of programming components, as well as implementation
and maintenance of the system. The proposed hybrid model offers several advantages:

Advantages:

Ease of understanding and implementation.

Encourage good practices: define before design, design before coding.

Clearly define goals and deliverables.

This methodology is particularly effective for existing products and teams that may not be strong enough.
It is simple and easy to use.

Each stage of the process is associated with a different outcome.

The probability of success is higher than the waterfall model and other methodologies, mainly due to the timely formulation of
test plans throughout the development lifecycle.

It is suitable for both small projects with clearly defined requirements and more complex projects. Considerable emphasis is placed
on risk analysis.

This approach is beneficial for large-scale critical initiatives.
Promotes strong team cohesion and prioritizes the final product.
The process is iterative in nature and adopts a test-based strategy to manage requirements and ensure quality assurance.

Figure 2 illustrates the relationship between the different testing processes and the different development phases, with the exception
of the implementation and maintenance phases. These latter phases are linked to the previous development phases and risk analysis
processes. In addition, the design phase is categorized into two segments: high-level design, which focuses on the fundamental
aspects of system design, such as graphics and algorithms based on the type of design used, and low-level design, which focuses

www.ijltemas.in Page 1036

\HIC
0\‘\ K2

&
-

)
%,
0

ISSN 2278-2540 | DOL:

1,

RSIS

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)

10.51583/1ILTEMAS | Volume X1V, Issue IV, April 2025

on programming design and technical details that support the overall system design. Additionally, this model allows to launch any
phase of the system development process, adapting to a wide range of project types.

Planning

Risk Analysis

Test Planning

Requirements

Test Requirements

High Level Design

Test Design

Low Level Design

Implementation

Unit Testing

Integration
Develonment

Integration Testing

System Testing

Deployment

Maintenance

A

Fig. (2): Details of Hybrid Model in SDLC

An analysis of the Hybrid Model in relation to the Spiral Model.

The models can be compared as shown in Table (1) below. [8]

Hybrid Model

Spiral Model

This approach is designed to accommodate projects of all
sizes, from small to large.

This framework is ideal for larger and more significant projects.

It specifies the endpoint for each distinct phase of the project.

It involves phases that are both frequent and overlapping.

The model prioritizes the planning phase alongside risk
management strategies.

The focus remains on effective risk management.

It is user-friendly and can be easily applied, especially in small
to medium projects.

Implementation requires a certain level of experience.

The success of the project is dependent on the stages of risk
analysis and testing.

It is based on the concept of repetition to create outcomes that
exceed a simple prototype.

Conclusion and Suggestions for Future Work

I1. Conclusion

Based on the established model, the following conclusions are drawn:

www.ijltemas.in

Page 1037

INTERNATIONAL JOURNAL OF LATEST TECHNOLOGY IN ENGINEERING,
MANAGEMENT & APPLIED SCIENCE (IJLTEMAS)

ISSN 2278-2540 | DOI: 10.51583/IJLTEMAS | Volume X1V, Issue 1V, April 2025

The hybrid model is based on five development methodologies: waterfall, spiral, iteration, V, and extreme programming models.

The hybrid model integrates the advantages of these five methodologies while being adaptable to projects of different sizes,
including small, medium, and large-scale efforts.

The hybrid model is divided into two parts: a main part that deals with the basic processes and a detailed part that focuses on the
operational aspects of these processes.

Recommendations for Future Research

Conduct a comparative analysis of the hybrid model with five other development methodologies in terms of profitability and risk
management, based on specifically defined criteria.

Apply the hybrid model to a wide range of projects, taking into account different requirements and needs.

Enhance the hybrid model to integrate traditional methodologies with advanced software engineering techniques such as object-
oriented systems development.

References
1. Lan Sommerville, "Software Engineering"”, Addison Wesley, 7th edition, 2004.
2. Karlm, "Software Lifecycle Models", KTH, 2006.
3. Lifecycle Models, National Instruments Corporation, 2006.
4. Steve Easterbrook, "Software Lifecycles"”, University of Toronto Department of Computer Science, 2001.
5. Rlewallen, "Software Development Life Cycle Models”, 2005.
6. Barry Boehm edited by Wilfred J. Hansen, "Spiral Development: Experience, Principles, and Refinements", 2000.
7. Roger S Pressman, "Software Engineering: A Practitioner's Approach", 7th edition, McGrawHill, 2009.
8. B. W. Boehm, “Classics in Software Engineering", Yourdon Press -Upper Saddle River, NJ, USA, Pages: 323 — 361,

ISBN: 0-917072-14-6, 1979.

www.ijltemas.in Page 1038

