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Abstract: Air quality assessment is crucial for environmental monitoring, public health and decision-making. Air quality does not depend solely on the concentration of certain gasses; rather, it is also influenced by other pollutants that are challenging to measure individually for further investigations. In this study, we used the UCI Air Quality dataset, which included key pollutants such as CO, NO₂, NOx, benzene, temperature, humidity and sensor data for other forms of pollutants. We proposed a novel labeling scheme based on weighted pollutant concentrations, enabling more precise air quality classification into Good, Moderate, and Unhealthy categories. After that, we evaluated five supervised learning models—Random Forest, Decision Tree, Support Vector Machine, K-Nearest  Neighbors,  and  Gradient  Boosting—for  classification,  considering  all  types  of  measured  pollutants,  and  assessed  their performance  using accuracy,  confusion  matrices,  classification reports, and  ROC-AUC  curves.  Our research  also highlights  the potential  of  AI-driven  techniques  in  comprehensive  air  quality  assessment  as  well  as  real-time  air  pollution  prediction  and classification for environmental protection.
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I.  Introduction

Air pollution is becoming a major concern in the modern world, significantly affecting human health as well as overall quality of life.  Presence  of  harmful  substances,  gases  and  biological  molecules  such  as  carbon  monoxide,  nitrogen  oxides  (NOx),  sulfur dioxide (SO2), benzene (C6H6) and particulate matter are responsible for polluting the air and environment. Industrial wastes or emissions, vehicular emissions and natural disasters like wildfires and volcanic eruptions are the potential sources of air pollution. Moreover, due to rapid industrialization and unplanned urbanization, air pollution has been increasing at an alarming rate.

As a result, it not only harms the surroundings but also increases health risks for humans.  According to many research studies, respiratory diseases, cardiovascular conditions, and premature deaths are becoming common due to excessive air pollution [1]. For example, people are most likely to suffer from chronic bronchitis, lung cancer, and heart attack due to prolonged exposure to some particular  pollutants like  NOx and  CO  [2].  Not  only  that,  air  pollution  can also  exacerbate  pre-existing health  diseases  such  as asthma and other respiratory disorders. Alongside these, air pollution is becoming a potential threat to the environment and wildlife by contributing to acid rain, damaging ecosystems and reducing biodiversity as well.

Therefore,  it  is  crucial  to  predict  the  air  quality  levels  accurately  so  that  governments  and  policymakers  can  take  preventive measures. However, traditional methods of data collection mostly rely on sensor based techniques and satellites data, which requires high costs while lacking real time adaptability. To address these challenges, researchers are exploring AI-driven or machine learning (ML) based techniques for air quality monitoring. Mostly, they  collect the data from IoT based sensors, which lack proper data labelling and target values for supervised learning. Also many people use their own threshold sensors values to create air quality indexes/labels.  Besides,  different  manufacturers  maintain  varying  measurement  units,  making  it  difficult  to  establish  universal threshold values [3].  As a result, many researchers need to work with unsupervised learning to identify patterns.

Not only that, IoT based sensor data often exhibit inconsistencies such as sensor noise, calibration issues, and nonlinear pollutant behavior [4]. Moreover, air quality data from IoT and electronic sensors may exhibit variability due to environmental factors like temperature,  humidity  and  pressure  fluctuations  [5].  To  address  these  challenges,  we  calculated  auxiliary  data  to  create  target features for supervised learning. These auxiliary data are derived from historical trends and numerous meteorological conditions. Besides, it will help us to reduce sensor variability, while improving classification accuracy [6].

In our work, we used standard parameters for data labelling [7]. After that, ML models are crucial to learning complex data patterns beyond classical threshold-based rules. Also real world data is often noisy and fixed thresholds may become outdated over time. ML models can handle these ambiguities better and can be fine-tuned for better performance as well. To provide comprehensive insights into air quality trends we also employed five distinct classification models, including random forest, support vector machine (SVM), decision tree, K-nearest neighbors and gradient boosting. Regarding performance, we evaluated their accuracy, precision, recall, confusion metrics and receiver operating characteristic (ROC) curves.


II. Related Works 
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Researchers  have  been  using  various  statistical,  machine  learning  and  deep  learning  models  to  enhance  air  quality  forecasting accuracy.  In  this  section,  we  are  going  to  review  significant  studies  that  have  contributed  to  this  domain,  highlighting  their methodologies, findings and limitations.


Traditional Statistical Approaches 

In 1976, Box and Jenkins introduced the autoregressive integrated moving average (ARIMA) model. It had been widely used for time-series forecasting of air pollution levels [8]. Since then, early research on air pollution prediction relied heavily on statistical models such as ARIMA. As ARIMA assumes linear relations between air quality factors, it has lower efficiency while calculating complex  interactions.  Later,  Seinfeld  and  Pandis  utilized  MLR  to  establish  relationships  between  meteorological  variables  and pollutant concentrations in 1998 [9]. Though MLR can provide interpretable results, it lacks adaptability to non-linear patterns for high-dimensional air quality data.

Machine Learning-Based Approaches 

Due to the advancement of semiconductor technology, researchers are getting access to high computational devices, allowing them to train machine learning models for air pollution forecasting. At the same time, edgeAI and TinyML are becoming popular for low power IoT devices. For instance, Jiang et al. (2017) used meteorological and pollution data and applied Random Forest and SVM to predict PM2.5 concentrations in Beijing [10]. They proposed that unlike traditional statistical methods, machine learning based algorithms can perform better due to  the ability to interpret complex correlations  between different features. Similarly, Li et al. implemented Gradient Boosting Machines (GBM) for air pollution classification. He claimed higher prediction accuracy for GBM as compared to ARIMA [11].

However, researchers are now able to unlock convoluted air quality patterns by using deep learning strategies. In 2020, Zhang et al. developed a Long Short-Term Memory (LSTM)-based air pollution prediction model. It leveraged historical pollutant data and meteorological factors to forecast PM2.5 levels [12]. According to their determinations, LSTM networks outperformed traditional ML  models  due  to  their  ability  to  retain  long-term  dependencies.  Therefore,  Recurrent  Neural  Networks  (RNNs)  and  LSTM networks are being widely used for time-series forecasting for high computational devices. Due to their higher computational cost, deep learning models cannot yet replace machine learning models for daily use.

Researchers  are  now  planning  to  work  with  hybrid  models  to  enhance  efficiency,  combining  statistical  and  machine  learning techniques, specially designed for low power devices. Additionally, it can increase accuracy and efficiency while consuming low power  and  can  be  implemented  in  embedded  systems  and wearable  devices.  In  2021,  Feng  et  al. integrated  ARIMA with  deep learning models to enhance predictive accuracy [13]. Results highlighted that hybrid models can outperform previous methods.  In 2022, an IoT-enabled smart monitoring air quality system was introduced by Kumar et al. He utilized ML algorithms to predict pollution levels based on real-time sensor data [14].

Despite  significant  progress,  challenges  remain  in  air  pollution  forecasting.  Though  many  studies  have  focused  on  specific pollutants  (eg,  PM2.5,  NO2)  but  have  failed  to  provide  a  comprehensive  air  quality  classification  framework.  Moreover,  the scalability  of  ML  model  across  different  geographical  areas  remains a  concern.  Our research addresses  these research  gaps  by introducing robust classification models incorporating multiple pollutants parameters and creating labels of three different  classes while ensuing broader adaptability.

III. Methodology 


Dataset 

Authentic data is crucial to maintaining accuracy while training ML models. In our work, we used the dataset of  the UC Irvine Machine Learning Repository, a reputable provider of authentic research data [15]. It contains real time sensor values and auxiliary data of key pollutants collected from an air pollution monitoring station in a town  in Italy. Our dataset has 9471 records and 15 features.  However,  it  has  some  missing  values  in  some  features,  which  were  handled  during  the  preprocessing  stage.  The  key variables in the dataset include:

CO (GT): Concentration of Carbon Monoxide (mg/m³)

NO2 (GT): Concentration of Nitrogen Dioxide (µg/m³)

NOx (GT): Concentration of Nitric Oxide and Nitrogen Dioxide (µg/m³)

C6H6 (GT): Benzene concentration (µg/m³)

NMHC (GT):  Non Metanic Hydrocarbons concentration (µg/m³)

T: Temperature (°C)

RH: Relative Humidity (%)

AH: Absolute Humidity (g/m³)

PT08.S1 (CO)    : Sensors reading of CO
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PT08.S2 (NMHC): Sensors reading of NMHC

PT08.S3 (NOx)  : Sensors reading of NOx

PT08.S4 (NO2)  : Sensors reading of NO2

PT08.S5 (O3)    : Sensors reading of O3

Date & Time: Timestamps of data collection (Removed during preprocessing)

The dataset provides hourly measurements over a period, allowing for the study of air pollution variations over time.


Data Preprocessing 

A) Handling null values 

Having null values in a dataset might impact the accuracy of ML  models. Initially, we analyzed our entire dataset to identify the missing value of the features. It has 114 missing values across various columns. In that case, the traditional way of handling null values is by replacing the null values with the mean or median of the entire column. In most cases, it is acceptable if the values are equally correlated. However, in our dataset, all the features are independent variables. Since null values in our dataset can lead to inconsistencies in training an ML model, we decided to do a complete case analysis and removed the rows with missing values. This decision was based on ensuring data integrity and preventing synthetic information. After removing the missing values, our dataset contained 9357 total records for training and evaluation.

B) Air Quality Labeling 

Unlike conventional air quality assessment ML models, we introduced a novel scheme of custom air quality labelling. Air quality dataset might contain some key pollutants data along with sensors reading for particular gas. We cannot directly score weighted values based solely on sensor data because sensor measurements are prone to inaccuracies due to environmental factors, calibration errors,  and  sensor  drift  [16].  Additionally,  air  quality  indicators  often rely  on  integrating multiple  pollutant  concentrations  and meteorological  variables.  Relying  solely  on  raw  sensor  data  can  lead  to  biased  or  inconsistent  scoring.  Instead,  incorporating auxiliary data, such as meteorological variables and pollutant ratios, enhances robustness and accuracy [17]. That’s why we assigned weighted score based on pollution severity and thresholds value derived from environmental safety standards.

Table 1: Pollutant Concentration Ranges and Their Assigned Score Values

Individual      CO (ppm)      NO2 (ppb)       Benzene       NOx (ppb)     Temperature     Humidity 

Score Value                                    (μg/m3                                   o ) (C)             (%) 

0                 ≤5              ≤100              ≤8              ≤75             0 – 35           20 - 80

1               5 – 10          100 – 200          8 – 16          75 – 150        <0 or >35       <20 or >80

2                >10              >200             >16             >150

 

Table 2: Air Quality Index Classification Based on Total Score

Total Score for Each Instance       Air Quality Index/Level 

≤2                             Good

3                                 Moderate

≥4                           Unhealthy

 

Table 1, presents the standard threshold values of key pollutants. We have three classes (Good, Moderate and Unhealthy) and their corresponding score ranges in Table 2. We calculated score value for each key pollutants and calculated total score to identify air quality label for each record. Categorizing air quality levels based on the score range is essential for any machine learning model. It enables a strategic classification approach. Our labelling scheme will aid in real-time application by allowing authorities to assess pollution effectively.

C) Feature Selection 

Feature  correlation is  known  as  the relationship  between  different  features  in a dataset.  Understanding  this  correlation between different variables is crucial for feature selection.
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Figure 1: Feature Correlation Matrix

Figure 1, is the visual representation of the correlation of our dataset, where each cell in the matrix contains the Pearson correlation coefficient. The color gradient further helps in identifying patterns. The darker shades there is, the stronger correlations there will be. For example, CO (GT) has a strong positive correlation (0.67) with NO2 (GT). On the other hand, temperature (t) and relative humidity (RH) both has a strong negative correlation (-0.89).

D) Encoding 

Machine  learning  models  require  numerical  values  to  process  the  data  effectively.  Therefore,  encoding  categorical  variables  is crucial  to  training  any  model.  Models  may  misinterpret  categorical  variables  due  to  the  inappropriate  encoding,  resulting  in performance reduction [18]. As we have three ordinal classes in the air quality level or index, we used label encoding to encode them. Therefore, good, moderate and unhealthy classes were converted to class 0, class 1 and class 2 respectively.

E) Scaling 

We used Min-Max scaling techniques to preprocess our data. Basically, It’s a normalization technique used to transform numerical data into a fixed range, typically [0, 1]. The formula is

𝐼          𝑋 − 𝑋 𝑚𝑖𝑛

𝑋 =

𝑋 𝑚𝑎𝑥 −   𝑋𝑚𝑖𝑛

X is the original value, Xmin and Xmax is the minimum and maximum value in the feature, respectively. Using min max scaling helps maintain feature relationships and prevent dominance by large values while improving model performance.

F) Train Test Split 

Train-test splitting is important to evaluate a machine learning model. The training set is used to train the model and the testing set is for evaluating the model.  Studies suggest that an 80-20% or 70-30% split is a common practice [19]. This technique prevents overfitting and helps to perform effectively. As a result, we used a 70-30% split before training the model.

G) Supervised Learning Models 

Our study implements five different supervised learning models to classify air quality  index which was created through a novel scheme. We used Random Forest, Decision Tree, Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and lastly Gradient Boosting. We will evaluate the performance of our models while classifying air quality levels. Fig. 2 depicts the workflow of our air quality prediction approaches.
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Figure 2: Flowchart of Our Methodology
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IV. Results and Discussion 

We evaluated our models in terms of four different metrics: Accuracy, Precision, Recall and F1 Score. Below are the formulas for those metrics:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =    𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁

𝐹1 𝑆𝑐𝑜𝑟𝑒  = 2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Negative) represent classification outcomes. Table 3 indicates the performance evaluation of five different supervised learning models-Random Forest, Decision Tree, Support Vector Machine  (SVM),  K  Nearest  Neighbors  (KNN)  and  Gradient  Boosting.  Overall,  Random  Forest,  Decision  Tree  and  Gradient Boosting achieved the highest scores on all metrics, indicating their ability to classify air pollution data correctly. However, KNN and SVM showed decent performance having accuracy around 0.92, making them moderately effective model.

Table 3: Performance Metrics of Machine Learning Models

Models                         Accuracy      Precision       Recall       F1-Score

Random Forest                     0.99          0.99          0.99           0.99

Decision Tree                         0.99           0.99           0.99           0.99

Support Vector Machine              0.90          0.91          0.90           0.91

K-Nearest Neighbors                 0.92          0.93          0.92           0.92

Gradient Boosting                    0.99           0.99           0.99           0.98

 

Fig.3 depicts the confusion matrices of five different models—Random Forest, Decision Tree, Support Vector Machine (SVM), K-Nearest  Neighbors  (KNN), and  Gradient  Boosting—evaluated  on  the  testing  dataset.  Gradient  Boosting,  Random  Forest  and Decision  Tree  had  the  lowest  misclassifications  while  predicting  multiple  classes  or  labels,  demonstrating  near-perfect classification, indicating that tree-based models performed significantly better. However, SVM and KNN struggled, particularly misclassifying moderate and unhealthy categories, leading to more misclassifications. The novel labelling scheme contributed to improving classification performance, providing clearer class separations and making supervised learning a powerful tool for air quality prediction.
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Figure 3: Confusion Matrix of (a) Decision Tree (b) Gradient Boosting (c) KNN (d) Random Forest (e) SVM
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Figure 4: ROC curve of our models

Fig.4, presents the Receiver Operating Characteristic (ROC) curve of  our classification models, indicating their performance in distinguishing air quality categories. The Area under the Curve (AUC) values highlight the effectiveness of our labelling scheme, with  Random  Forest  and  Gradient  Boosting  achieving  an  AUC  of  1.00,  indicating  perfect  classification  ability.  Decision  Tree follows closely  with an AUC of 0.99, while KNN and SVM achieve 0.97 and 0.95, respectively.  Additionally, the sharp rise in True Positive Rate (TPR) with minimal False Positive Rate (FPR) signifies high model reliability and classification accuracy. The findings suggest that our thresholds-based labelling method provides a reliable classification framework, making it valuable for real-world air quality assessment.


V. Conclusion  

This  study  proposed  a novel  labelling  method  and  evaluated  five  supervised  learning  models—Random  Forest,  Decision  Tree, SVM, KNN and Gradient Boosting— for air quality assessment. According to our results, tree based models, particularly Random Forest and Gradient Boosting, achieved the highest classification accuracy, making them highly suitable for real world air quality prediction. Additionally, our novel labelling scheme, based on pollutant concentrations and standard weighted scores, provided a scalable  framework  for  categorizing  air  quality  into  multiple  classes  which  improved  adaptability  comparing  with  traditional methods. In future, we will integrate SMD sensor data and employ our models using edgeAI and tinyML for low power IoT devices.
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