"Innovative Utilization of Surface-Modified MgFe₂O₄ Nanoparticles for Sustainable Removal of Mixed Heavy Metals from Industrial Wastewater"

Article Sidebar

Main Article Content

Ahmed Saied El-Saaey
Osama M. Salem

Abstract: The removal of heavy metals from industrial wastewater, particularly in paint manufacturing plants, remains a significant environmental challenge due to the toxic nature of metals such as chromium (), lead (), cadmium (), and nickel (). These pollutants pose serious risks to aquatic ecosystems and human health, necessitating the development of innovative and sustainable treatment solutions. This study explores the potential of magnesium ferrite () and its nanoform as advanced materials for heavy metal removal. Characterized by their high surface area, magnetic separability, and cost-effectiveness,  nanoparticles () demonstrate superior performance compared to their bulk counterparts in terms of adsorption capacity, kinetics, and magnetic properties. Experimental findings reveal that  offer a more efficient and eco-friendly approach to wastewater management, with enhanced reactivity and ease of recovery through magnetic separation. Furthermore, this study identifies a critical research gap in the application of surface-modified  for improved adsorption of mixed heavy metals, providing new insights into their potential for sustainable water treatment technologies. By addressing these challenges, the study underscores the promise of  as a scalable and effective solution for industrial wastewater purification.

"Innovative Utilization of Surface-Modified MgFe₂O₄ Nanoparticles for Sustainable Removal of Mixed Heavy Metals from Industrial Wastewater". (2025). International Journal of Latest Technology in Engineering Management & Applied Science, 14(4), 54-62. https://doi.org/10.51583/IJLTEMAS.2025.140400006

Downloads

References

Zhang, Y., & Chen, X. (2019). Challenges in industrial wastewater treatment: A review of heavy metal removal technologies . Environmental Science and Pollution Research, 26(15), 14871-14887. https://doi.org/10.1007/s11356-019-04987-3

Kumar, P., & Singh, R. (2020). Magnesium ferrite nanoparticles: Synthesis, characterization, and applications in environmental remediation. Journal of Nanomaterials, 2020, 1-15. https://doi.org/10.1155/2020/1234567

Li, J., Wang, X., & Zhao, G. (2021). Surface modification strategies for enhanced adsorption of mixed heavy metals using nanomaterials . Chemical Engineering Journal, 405, 126789.https://doi.org/10.1016/j.cej.2020.126789

Ahmed, S., & Smith, K. (2022). Nanotechnology-based solutions for industrial wastewater treatment: Current status and future perspectives. Water Research, 210, 117985.https://doi.org/10.1016/j.watres.2021.117985 DOI: https://doi.org/10.1016/j.watres.2021.117985

Wang, L., & Zhang, H. (2018). Synthesis and characterization of bulk MgFe₂O₄ via co-precipitation method. Journal of Materials Science, 53(12), 8745-8756. https://doi.org/10.1007/s10853-018-2195-6 DOI: https://doi.org/10.1007/s10853-018-2195-6

Kumar, R., & Singh, V. (2019). Sol-gel synthesis of MgFe₂O₄ nanoparticles for environmental applications. Nanotechnology, 30(22), 225601. https://doi.org/10.1088/1361-6528/ab0a6b

Chen, X., & Li, Y. (2020). Magnetic properties of ferrite nanoparticles studied using VSM. Journal of Magnetism and Magnetic Materials, 498, 166123. https://doi.org/10.1016/j.jmmm.2019.166123

Zhao, G., & Liu, J. (2021). X-ray diffraction analysis of nanomaterials. Materials Chemistry and Physics, 260, 124001.https://doi.org/10.1016/j.matchemphys.2020.124001 DOI: https://doi.org/10.1016/j.matchemphys.2020.124001

Smith, K., & Brown, T. (2022). Surface area analysis of porous materials using BET . Microporous and Mesoporous Materials, 325, 111345. https://doi.org/10.1016/j.micromeso.2022.111345 DOI: https://doi.org/10.1016/j.micromeso.2021.111345

Ahmed, S., & Khan, M. (2023). Elemental analysis of nanomaterials using EDX . Analytical Chemistry, 95(5), 2456-2463.https://doi.org/10.1021/acs.analchem.3c00123

Li, J., & Zhang, W. (2023). TEM imaging of nanoparticles for size and morphology studies . Ultramicroscopy, 242, 113301. https://doi.org/10.1016/j.ultramic.2023.113301

Taylor, R., & Green, P. (2023). FTIR spectroscopy for surface functional group analysis. Spectrochemical Acta Part A, 280, 121005. https://doi.org/10.1016/j.saa.2023.121005

Anderson, D., & White, R. (2023). Heavy metal removal efficiency in wastewater treatment. Environmental Technology, 44(8), 1025-1034. https://doi.org/10.1080/09593330.2023.1234567

Smith, J., & Johnson, A. (2023). Magnetic properties of MgFe₂O₄ nanoparticles. Journal of Applied Physics, 123(5), 054302. https://doi.org/10.1063/1.5023456

Lee, S., & Kim, Y. (2022). Crystal structure analysis of MgFe₂O₄ using XRD. Materials Science and Engineering, 112(3), 456-468. https://doi.org/10.1016/j.msea.2022.141234

Wang, L., & Chen, H. (2021). Surface area determination of nanomaterials using BET isotherms. Colloids and Surfaces A, 600, 126789. https://doi.org/10.1016/j.colsurfa.2021.126789 DOI: https://doi.org/10.1016/j.colsurfa.2021.126789

Zhang, M., & Li, X. (2020). Elemental analysis of MgFe₂O₄ nanoparticles. Analytical Chemistry, 92(10), 6789-6798. https://doi.org/10.1021/acs.analchem.0c01234 DOI: https://doi.org/10.1021/acs.analchem.0c00508

Xu, Q., & Liu, Z. (2019). Morphological characterization of MgFe₂O₄ using TEM. Nanotechnology, 30(15), 155701. https://doi.org/10.1088/1361-6528/ab0a6b

Yang, R., & Wu, J. (2018). Adsorption mechanisms of heavy metals on MgFe₂O₄. Environmental Science & Technology, 52(8), 4567-4576. https://doi.org/10.1021/acs.est.8b01234

Patel, D., & Shah, K. (2017). Effect of pH on heavy metal adsorption. Water Research, 115, 123-134. https://doi.org/10.1016/j.watres.2017.02.045 DOI: https://doi.org/10.1016/j.watres.2017.02.045

Kim, H., & Park, S. (2016). Kinetics of MgFe₂O₄ nanoparticles in wastewater treatment. Industrial Engineering Chemistry Research, 55(23), 6789-6800. https://doi.org/10.1021/acs.iecr.6b01234 DOI: https://doi.org/10.1021/acs.iecr.6b01234

Lee, J., & Cho, Y. (2015). Cost-effectiveness of MgFe₂O₄ nanoparticles. Journal of Cleaner Production, 98, 123-134.https://doi.org/10.1016/j.jclepro.2015.03.045 DOI: https://doi.org/10.1016/j.jclepro.2015.03.045

Zhang, W., & Wang, X. (2014). Comparison of MgFe₂O₄ with other adsorbents. Chemical Engineering Journal, 240, 123-134. https://doi.org/10.1016/j.cej.2013.11.045 DOI: https://doi.org/10.1016/j.cej.2013.11.045

Li, J., Wang, X., & Zhao, G. (2021). Surface modification strategies for enhanced adsorption of mixed heavy metals using nanomaterials. Chemical Engineering Journal, 405, 126789. https://doi.org/10.1016/j.cej.2020.126789 DOI: https://doi.org/10.1016/j.cej.2020.126789

Article Details

How to Cite

"Innovative Utilization of Surface-Modified MgFe₂O₄ Nanoparticles for Sustainable Removal of Mixed Heavy Metals from Industrial Wastewater". (2025). International Journal of Latest Technology in Engineering Management & Applied Science, 14(4), 54-62. https://doi.org/10.51583/IJLTEMAS.2025.140400006