Advancing Predictive Analytics: Integrating Machine Learning and Data Modelling for Enhanced Decision-Making

Article Sidebar

Main Article Content

Dr. Olivier Gatete

Abstract: In the era of big data, the synergy between machine learning (ML) and data modeling has emerged as a cornerstone for predictive analytics. This article explores the integration of machine learning techniques with traditional data modeling approaches to enhance decision-making across various domains. By leveraging the strengths of both methodologies, organizations can unlock deeper insights, improve accuracy, and drive innovation. This article discusses key concepts, challenges, and applications, providing a roadmap for researchers and practitioners to harness the full potential of these technologies.

Advancing Predictive Analytics: Integrating Machine Learning and Data Modelling for Enhanced Decision-Making. (2025). International Journal of Latest Technology in Engineering Management & Applied Science, 14(4), 169-189. https://doi.org/10.51583/IJLTEMAS.2025.140400020

Downloads

References

Adebayo, J., & Kagal, L. (2016). FairML. PMLR.

Airbnb Engineering. (2022). Scaling machine learning at Airbnb with data mesh. https://medium.com/airbnb-engineering

Angwin, J., et al. (2016). Machine bias. ProPublica.

Barocas, S., & Selbst, A. D. (2016). Big data's disparate impact. California Law Review, 104(3), 671-732. https://doi.org/10.15779/Z38BG31 DOI: https://doi.org/10.2139/ssrn.2477899

Bellamy, R. K., et al. (2019). AI Fairness 360. IBM Journal.

Bird, S., Dudík, M., Edgar, R., et al. (2020). Fairlearn: A toolkit for assessing and improving fairness in AI. Microsoft Research. https://www.microsoft.com/research/project/fairlearn/

Bolukbasi, T., Chang, K.-W., Zou, J. Y., et al. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. Advances in Neural Information Processing Systems, 29.

Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. Proceedings of the Conference on Fairness, Accountability, and Transparency, 77-91.

Chang, C.C., and Lin, C.J. (2011). "LIBSVM: A Library for Support Vector Machines." ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1–27. DOI: https://doi.org/10.1145/1961189.1961199

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). DOI: https://doi.org/10.1145/2939672.2939785

Chouldechova, A. (2017). Fair prediction. FATML.

Dwork, C., et al. (2012). Fairness through awareness. ITCS. DOI: https://doi.org/10.1145/2090236.2090255

Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database Systems (7th Edition). Pearson

Esteva, A., Kuprel, B., Novoa, R. A., et al. (2017). "Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks." Nature, 542(7639), 115–118. DOI: https://doi.org/10.1038/nature21056

EU AI Act. (2024). Regulation on artificial intelligence. European Parliament. https://www.europarl.europa.eu/

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient and robust automated machine learning. Advances in neural information processing systems, 28.

Gartner. (2022). "Top 10 Data and Analytics Trends for 2023."

Gebru, T., Morgenstern, J., Vecchione, B., et al. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86-92. DOI: https://doi.org/10.1145/3458723

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Google PAIR. (2023). People + AI guidebook. https://pair.withgoogle.com/guidebook

Hamilton, W. L. (2023). Graph representation learning. Morgan & Claypool.

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.

Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques. Morgan Kaufmann.

Hoberman, S. (2020). Data Modeling Made Simple: A Practical Guide for Business and IT Professionals. Technics Publications.

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated Machine Learning: Methods, Systems, Challenges. Springer. DOI: https://doi.org/10.1007/978-3-030-05318-5

IBM. (2020). "The Role of Data Modeling in AI and Machine Learning."

IBM. (2021). AI governance framework. https://www.ibm.com/artificial-intelligence/governance

Inmon, W. H., and Linstedt, D. (2019). Data Architecture: A Primer for the Data Scientist. Morgan Kaufmann.

Jolliffe, I. T., and Cadima, J. (2016). "Principal Component Analysis: A Review and Recent Developments." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. DOI: https://doi.org/10.1098/rsta.2015.0202

Jordan, M. I., and Mitchell, T. M. (2015). "Machine Learning: Trends, Perspectives, and Prospects." Science, 349(6245), 255–260. DOI: https://doi.org/10.1126/science.aaa8415

Kairouz, P., et al. (2021). "Advances and Open Problems in Federated Learning." Foundations and Trends in Machine Learning, 14(1–2), 1–210.

Kanter, J. M., and Veeramachaneni, K. (2015). "Deep Feature Synthesis: Towards Automating Data Science Endeavors." IEEE International Conference on Data Science and Advanced Analytics (DSAA). DOI: https://doi.org/10.1109/DSAA.2015.7344858

Kimball, R., & Ross, M. (2013). The data warehouse toolkit: The definitive guide to dimensional modeling (3rd ed.). Wiley.

Kohavi, R., and Provost, F. (1998). "Glossary of Terms." Machine Learning, 30(2–3), 271–274. DOI: https://doi.org/10.1023/A:1017181826899

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). "ImageNet Classification with Deep Convolutional Neural Networks." Advances in Neural Information Processing Systems (NeurIPS).

LeCun, Y., Bengio, Y., and Hinton, G. (2015). "Deep Learning." Nature, 521(7553), 436–444. DOI: https://doi.org/10.1038/nature14539

Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. (2010). "Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters." Internet Mathematics, 6(1), 29–123. DOI: https://doi.org/10.1080/15427951.2009.10129177

Lundberg, S. M., and Lee, S. I. (2017). "A Unified Approach to Interpreting Model Predictions." Advances in Neural Information Processing Systems (NeurIPS).

Manyika, J., Chui, M., Brown, B., et al. (2011). "Big Data: The Next Frontier for Innovation, Competition, and Productivity." McKinsey Global Institute.

McInnes, L., Healy, J., and Melville, J. (2018). "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction." arXiv preprint arXiv:1802.03426 DOI: https://doi.org/10.21105/joss.00861

McKinsey and Company. (2021). "The AI Frontier: Modeling the Impact of AI on the World Economy." Mehrabi, N., et al. (2021). Bias in AI. ACM Computing Surveys.

Mitchell, M., Wu, S., Zaldivar, A., et al. (2019). Model cards for model reporting. Proceedings of the Conference on Fairness, Accountability, and Transparency, 220-229. DOI: https://doi.org/10.1145/3287560.3287596

Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). "Human-Level Control Through Deep Reinforcement Learning." Nature, 518(7540), 529–533. DOI: https://doi.org/10.1038/nature14236

Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.

Müllner, D. (2011). "Modern Hierarchical, Agglomerative Clustering Algorithms." arXiv preprint arXiv:1109.2378.

Murphy, K. P. (2022). Probabilistic Machine Learning: An Introduction. MIT Press.

Obermeyer, Z., et al. (2019). Dissecting racial bias. Science.

Provost, F., & Fawcett, T. (2013). Data science for business: What you need to know about data mining and data-analytic thinking. O'Reilly Media, Inc.

Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating bias in algorithmic hiring. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. DOI: https://doi.org/10.1145/3351095.3372828

Rajkomar, A., Hardt, M., Howell, M. D., et al. (2018). Ensuring fairness in machine learning to advance health equity. Annals of Internal Medicine, 169(12), 866-872. DOI: https://doi.org/10.7326/M18-1990

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "Why Should I Trust You? Explaining the Predictions of Any Classifier." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. DOI: https://doi.org/10.1145/2939672.2939778

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). The graph neural network model. IEEE transactions on neural networks, 20(1), 61-80. DOI: https://doi.org/10.1109/TNN.2008.2005605

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). "Trust Region Policy Optimization." Proceedings of the 32nd International Conference on Machine Learning (ICML), 37, 1889–1897.

Sculley, D., Holt, G., Golovin, D., et al. (2015). Hidden technical debt in machine learning systems. Advances in Neural Information Processing Systems, 28.

Shalev-Shwartz, S., and Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781107298019

Shi, W., Cao, J., Zhang, Q., et al. (2016). "Edge Computing: Vision and Challenges." IEEE Internet of Things Journal, 3(5), 637–646. DOI: https://doi.org/10.1109/JIOT.2016.2579198

Stanford HAI. (2023). AI index report 2023. https://hai.stanford.edu/research/ai-index

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.

Sweeney, L. (2013). "Discrimination in Online Ad Delivery." Communications of the ACM, 56(5), 44–54. DOI: https://doi.org/10.1145/2447976.2447990

Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.

Wexler, J., Pushkarna, M., Bolukbasi, T., et al. (2019). The what-if tool: Interactive probing of machine learning models. IEEE Transactions on Visualization and Computer Graphics. DOI: https://doi.org/10.1109/TVCG.2019.2934619

Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 1-19. DOI: https://doi.org/10.1145/3298981

Zhou, J., Cui, G., Hu, S., et al. (2023). Graph neural networks: Taxonomy, advances, and trends. ACM Transactions on Intelligent Systems and Technology, 14(1), 1-54. DOI: https://doi.org/10.1145/3495161

Article Details

How to Cite

Advancing Predictive Analytics: Integrating Machine Learning and Data Modelling for Enhanced Decision-Making. (2025). International Journal of Latest Technology in Engineering Management & Applied Science, 14(4), 169-189. https://doi.org/10.51583/IJLTEMAS.2025.140400020