Improving Fall Prevention Strategies in United States Hospitals: A Data-Driven Approach to Patient Safety and Cost Reduction While Supporting National Health Priorities
Article Sidebar
Main Article Content
Abstract: Hospital falls represent a critical public health challenge within the United States healthcare system, affecting approximately 700,000 to 1,000,000 patients annually in acute care settings, with 30–35% resulting in injury. These incidents negatively impact patient outcomes, hospital efficiency, and healthcare costs. The complexity of fall events necessitates a technology-enabled approach to prevention and risk reduction. Advanced predictive analytics and artificial intelligence (AI) offer promising solutions to this persistent issue. This study introduces an innovative data-driven approach that integrates predictive analytics, AI-based risk assessments, and evidence-based interventions. By combining machine learning algorithms with comprehensive risk assessment protocols, healthcare institutions can develop dynamic, personalized fall prevention strategies that enhance patient safety while reducing costs. This approach demonstrates potential for significant improvements, with estimated national savings of approximately $1.82 billion annually. Participating hospitals reported outcomes such as up to 98.9% accuracy in fall risk prediction and a 66.7% reduction in fall incidents, reinforcing the role of AI in improving safety. The framework is distinguished by its integration of real-time monitoring, machine learning, and clinical workflow adaptation, allowing for responsive, patient-specific interventions that evolve during hospitalization. Furthermore, it emphasizes multidisciplinary collaboration, technological integration, and continuous performance monitoring to support a scalable and adaptive fall prevention strategy.
Downloads
References
Alsuyayfi, S., & Alanazi, A. (2022). Impact of clinical alarms on patient safety from nurses’ perspective. Informatics in Medicine Unlocked, 32, 101047. https://doi.org/10.1016/j.imu.2022.101047 DOI: https://doi.org/10.1016/j.imu.2022.101047
Association Between Nurse Staffing Levels And Inpatient Falls. (n.d.). Journal of Hospital Medicine, Volume 2, Suppl 2. Hospital Medicine 2007, May 23-25, Dallas, Texas. Retrieved April 8, 2025, from https://shmabstracts.mystagingwebsite.com/abstract/association-between-nurse-staffing-levels-and-inpatient-falls/
Ayton, D. R., Barker, A. L., Morello, R. T., Brand, C. A., Talevski, J., Landgren, F. S., Melhem, M. M., Bian, E., Brauer, S. G., Hill, K. D., Livingston, P. M., & Botti, M. (2017). Barriers and enablers to the implementation of the 6-PACK falls prevention program: A pre-implementation study in hospitals participating in a cluster randomised controlled trial. PLoS ONE, 12(2), e0171932. https://doi.org/10.1371/journal.pone.0171932 DOI: https://doi.org/10.1371/journal.pone.0171932
Bagui, S., Long, T., & Bagui, S. (2019). Selecting the Optimal Morse Falls Scale Cut-Off Point for Patient Fall Risk. Health, 11(7), Article 7. https://doi.org/10.4236/health.2019.117074 DOI: https://doi.org/10.4236/health.2019.117074
Bargmann, A. L., & Brundrett, S. M. (2020). Implementation of a Multicomponent Fall Prevention Program: Contracting With Patients for Fall Safety. Military Medicine, 185(Supplement_2), 28–34. https://doi.org/10.1093/milmed/usz411 DOI: https://doi.org/10.1093/milmed/usz411
Baris, V. K., & Seren Intepeler, S. (2023). Evaluation of the cost-effectiveness of a multicomponent fall prevention program in hospitalized patients. Nursing & Health Sciences, 25(4), 585–596. https://doi.org/10.1111/nhs.13051 DOI: https://doi.org/10.1111/nhs.13051
Clemson, L., Mackenzie, L., Roberts, C., Poulos, R., Tan, A., Lovarini, M., Sherrington, C., Simpson, J. M., Willis, K., Lam, M., Tiedemann, A., Pond, D., Peiris, D., Hilmer, S., Pit, S. W., Howard, K., Lovitt, L., & White, F. (2017). Integrated solutions for sustainable fall prevention in primary care, the iSOLVE project: A type 2 hybrid effectiveness-implementation design. Implementation Science : IS, 12, 12. https://doi.org/10.1186/s13012-016-0529-9 DOI: https://doi.org/10.1186/s13012-016-0529-9
Clemson, L., Stark, S., Pighills, A. C., Fairhall, N. J., Lamb, S. E., Ali, J., & Sherrington, C. (n.d.-a). Environmental interventions for preventing falls in older people living in the community—Clemson, L - 2023 | Cochrane Library. Retrieved April 18, 2025, from https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013258.pub2/full?utm_source=mp-fotoscapes
Clemson, L., Stark, S., Pighills, A. C., Fairhall, N. J., Lamb, S. E., Ali, J., & Sherrington, C. (n.d.-b). Environmental interventions for preventing falls in older people living in the community—Clemson, L - 2023 | Cochrane Library. Retrieved April 8, 2025, from https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013258.pub2/full DOI: https://doi.org/10.1002/14651858.CD013258.pub2
Cost of Inpatient Falls and Cost-Benefit Analysis of Implementation of an Evidence-Based Fall Prevention Program | Health Policy | JAMA Health Forum | JAMA Network. (n.d.). Retrieved April 8, 2025, from https://jamanetwork.com/journals/jama-health-forum/fullarticle/2800748
Digital technologies to prevent falls in people living with dementia or mild cognitive impairment: A rapid systematic overview of systematic reviews | Age and Ageing | Oxford Academic. (n.d.). Retrieved April 18, 2025, from https://academic.oup.com/ageing/article/53/1/afad238/7517659
Dykes, P. C., Burns, Z., Adelman, J., Benneyan, J., Bogaisky, M., Carter, E., Ergai, A., Lindros, M. E., Lipsitz, S. R., Scanlan, M., Shaykevich, S., & Bates, D. W. (2020a). Evaluation of a Patient-Centered Fall-Prevention Tool Kit to Reduce Falls and Injuries. JAMA Network Open, 3(11), e2025889. https://doi.org/10.1001/jamanetworkopen.2020.25889
Dykes, P. C., Burns, Z., Adelman, J., Benneyan, J., Bogaisky, M., Carter, E., Ergai, A., Lindros, M. E., Lipsitz, S. R., Scanlan, M., Shaykevich, S., & Bates, D. W. (2020b). Evaluation of a Patient-Centered Fall-Prevention Tool Kit to Reduce Falls and Injuries: A Nonrandomized Controlled Trial. JAMA Network Open, 3(11), e2025889. https://doi.org/10.1001/jamanetworkopen.2020.25889 DOI: https://doi.org/10.1001/jamanetworkopen.2020.25889
Dykes, P. C., Curtin-Bowen, M., Lipsitz, S., Franz, C., Adelman, J., Adkison, L., Bogaisky, M., Carroll, D., Carter, E., Herlihy, L., Lindros, M. E., Ryan, V., Scanlan, M., Walsh, M.-A., Wien, M., & Bates, D. W. (2023). Cost of Inpatient Falls and Cost-Benefit Analysis of Implementation of an Evidence-Based Fall Prevention Program. JAMA Health Forum, 4(1), e225125. https://doi.org/10.1001/jamahealthforum.2022.5125 DOI: https://doi.org/10.1001/jamahealthforum.2022.5125
Dykes, P. C., Duckworth, M., Cunningham, S., Dubois, S., Driscoll, M., Feliciano, Z., Ferrazzi, M., Fevrin, F. E., Lyons, S., Lindros, M. E., Monahan, A., Paley, M. M., Jean-Pierre, S., & Scanlan, M. (2017). Pilot Testing Fall TIPS (Tailoring Interventions for Patient Safety): A Patient-Centered Fall Prevention Toolkit. Joint Commission Journal on Quality and Patient Safety, 43(8), 403–413. https://doi.org/10.1016/j.jcjq.2017.05.002 DOI: https://doi.org/10.1016/j.jcjq.2017.05.002
Dykes, P. C., Khasnabish, S., Burns, Z., Adkison, L. E., Alfieri, L., Bogaisky, M., Carroll, D. L., Carter, E. J., Hurley, A. C., Jackson, E., Kurian, S., Lindros, M. E., Ryan, V., Scanlan, M., Sessler, K., Shelley, A., Spivack, L. B., Walsh, M.-A., Bates, D. W., & Adelman, J. S. (2022). Development and Validation of a Fall Prevention Efficiency Scale. Journal of Patient Safety, 18(2), 94. https://doi.org/10.1097/PTS.0000000000000811 DOI: https://doi.org/10.1097/PTS.0000000000000811
Eost-Telling, C., Yang, Y., Norman, G., Hall, A., Hanratty, B., Knapp, M., Robinson, L., & Todd, C. (2024). Digital technologies to prevent falls in people living with dementia or mild cognitive impairment: A rapid systematic overview of systematic reviews. Age and Ageing, 53(1), afad238. https://doi.org/10.1093/ageing/afad238 DOI: https://doi.org/10.1093/ageing/afad238
Fall Detection & Fall Prevention Health Analytics: Vayyar Care. (n.d.). Retrieved April 7, 2025, from https://vayyar.com/care/?utm_source=chatgpt.com
Falls Dashboard. (n.d.). Retrieved April 7, 2025, from https://www.ahrq.gov/npsd/data/dashboard/falls.html
Ferreira, R. N., Ribeiro, N. F., & Santos, C. P. (2022). Fall Risk Assessment Using Wearable Sensors: A Narrative Review. Sensors, 22(3), Article 3. https://doi.org/10.3390/s22030984 DOI: https://doi.org/10.3390/s22030984
Fujifilm, Juntendo Hospital develop fall risk detection AI | MobiHealthNews. (n.d.). Retrieved April 18, 2025, from https://www.mobihealthnews.com/news/asia/fujifilm-juntendo-hospital-develop-fall-risk-detection-ai
Hanna, M. G., Pantanowitz, L., Jackson, B., Palmer, O., Visweswaran, S., Pantanowitz, J., Deebajah, M., & Rashidi, H. H. (2025). Ethical and Bias Considerations in Artificial Intelligence/Machine Learning. Modern Pathology, 38(3), 100686. https://doi.org/10.1016/j.modpat.2024.100686 DOI: https://doi.org/10.1016/j.modpat.2024.100686
Haynes, A. B., Weiser, T. G., Berry, W. R., Lipsitz, S. R., Breizat, A.-H. S., Dellinger, E. P., Herbosa, T., Joseph, S., Kibatala, P. L., Lapitan, M. C. M., Merry, A. F., Moorthy, K., Reznick, R. K., Taylor, B., & Gawande, A. A. (2009). A Surgical Safety Checklist to Reduce Morbidity and Mortality in a Global Population. New England Journal of Medicine, 360(5), 491–499. https://doi.org/10.1056/NEJMsa0810119 DOI: https://doi.org/10.1056/NEJMsa0810119
Holmgren, A. J., McBride, S., Gale, B., & Mossburg, S. (2023). Technology as a Tool for Improving Patient Safety. Technology as a Tool for Improving Patient Safety. https://psnet.ahrq.gov/perspective/technology-tool-improving-patient-safety
Hospital cuts costly falls by 39% due to predictive analytics. (2017, April 12). Healthcare IT News. https://www.healthcareitnews.com/news/hospital-cuts-costly-falls-39-due-predictive-analytics
Hospital-Acquired Condition Reduction Program | CMS. (n.d.-a). Retrieved February 24, 2025, from https://www.cms.gov/medicare/payment/prospective-payment-systems/acute-inpatient-pps/hospital-acquired-condition-reduction-program-hacrp?utm_source=chatgpt.com
Hospital-Acquired Condition Reduction Program | CMS. (n.d.-b). Retrieved March 25, 2025, from https://www.cms.gov/medicare/payment/prospective-payment-systems/acute-inpatient-pps/hospital-acquired-condition-reduction-program-hacrp
Igual, R., Medrano, C., & Plaza, I. (2013). Challenges, issues and trends in fall detection systems. BioMedical Engineering OnLine, 12, 66. https://doi.org/10.1186/1475-925X-12-66 DOI: https://doi.org/10.1186/1475-925X-12-66
Ji, S., Jung, H.-W., Kim, J., Kwon, Y., Seo, Y., Choi, S., Oh, H. J., Baek, J. Y., Jang, I.-Y., & Lee, E. (2023). Comparative Study of the Accuracy of At-Point Clinical Frailty Scale and Morse Fall Scale in Identifying High-Risk Fall Patients among Hospitalized Adults. Annals of Geriatric Medicine and Research, 27(2), 99–105. https://doi.org/10.4235/agmr.23.0057 DOI: https://doi.org/10.4235/agmr.23.0057
Journal of Healthcare Management. (n.d.). Retrieved April 18, 2025, from https://journals.lww.com/jhmonline/Pages/default.aspx
Marketing, E. (2017, June 9). Hospital-Acquired Conditions (HAC) Reduction Program. Eloquest Healthcare, Inc. https://eloquesthealthcare.com/2017/06/09/hospital-acquired-conditions-hac-reduction-program/
Measuring the Success of Fall Prevention Initiatives in Hospitals: Metrics and Monitoring Techniques for Continuous Improvement | Simbo AI - Blogs. (2024, October 22). https://www.simbo.ai/blog/measuring-the-success-of-fall-prevention-initiatives-in-hospitals-metrics-and-monitoring-techniques-for-continuous-improvement-1582105/
Na, L., Carballo, K. V., Pauphilet, J., Haddad-Sisakht, A., Kombert, D., Boisjoli-Langlois, M., Castiglione, A., Khalifa, M., Hebbal, P., Stein, B., & Bertsimas, D. (2023). Patient Outcome Predictions Improve Operations at a Large Hospital Network (No. arXiv:2305.15629). arXiv. https://doi.org/10.48550/arXiv.2305.15629
Nasiri, E., Lotfi, M., Mahdavinoor, S. M. M., & Rafiei, M. H. (2021). The impact of a structured handover checklist for intraoperative staff shift changes on effective communication, OR team satisfaction, and patient safety: A pilot study. Patient Safety in Surgery, 15(1), 25. https://doi.org/10.1186/s13037-021-00299-1 DOI: https://doi.org/10.1186/s13037-021-00299-1
National Center for Biotechnology Information. (n.d.). Retrieved April 18, 2025, from https://www.ncbi.nlm.nih.gov/
Nurses documentation of falls prevention in a patient centred care plan in a medical ward | Australian Journal of Advanced Nursing. (n.d.). Retrieved February 24, 2025, from https://www.ajan.com.au/index.php/AJAN/article/view/103
Palmer, A. (n.d.). Evidence-based Strategies for Fall Prevention.
Predictive Analytics Tool Identifies Readmission Risk, Reduces Costs | TechTarget. (n.d.). Healthtech Analytics. Retrieved March 24, 2025, from https://www.techtarget.com/healthtechanalytics/news/366590437/Predictive-Analytics-Tool-Identifies-Readmission-Risk-Reduces-Costs
Preventing Falls at Home: Room by Room. (2022, September 12). National Institute on Aging. https://www.nia.nih.gov/health/falls-and-falls-prevention/preventing-falls-home-room-room
Preventing Falls Through Patient and Family Engagement to Create Customized Prevention Plans. (2024). https://psnet.ahrq.gov/innovation/preventing-falls-through-patient-and-family-engagement-create-customized-prevention
Preventing Patient Falls: A Systematic Approach from the Joint Commission Center for Transforming Healthcare Project—Google Search. (n.d.). Retrieved February 24, 2025, from https://www.google.com/search?q=Preventing+Patient+Falls%3A+A+Systematic+Approach+from+the+Joint+Commission+Center+for+Transforming+Healthcare+Project&rlz=1C1GCEA_enUS1103US1103&oq=Preventing+Patient+Falls%3A+A+Systematic+Approach+from+the+Joint+Commission+Center+for+Transforming+Healthcare+Project&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBBzQ2MmowajSoAgCwAgE&sourceid=chrome&ie=UTF-8#vhid=zephyr:0&vssid=atritem-https://www.aha.org/system/files/2018-01/preventing-patient-falls.pdf
Rajagopalan, R., Litvan, I., & Jung, T.-P. (2017). Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions. Sensors (Basel, Switzerland), 17(11), 2509. https://doi.org/10.3390/s17112509 DOI: https://doi.org/10.3390/s17112509
Randell, R., McVey, L., Wright, J., Zaman, H., Cheong, V.-L., Woodcock, D. M., Healey, F., Dowding, D., Gardner, P., Hardiker, N. R., Lynch, A., Todd, C., Davey, C., & Alvarado, N. (2024). Introduction. In Practices of falls risk assessment and prevention in acute hospital settings: A realist investigation. National Institute for Health and Care Research. https://www.ncbi.nlm.nih.gov/books/NBK602071/ DOI: https://doi.org/10.3310/JWQC5771
Reduce variability of care: Factors, benefits and methods. (n.d.). Retrieved April 8, 2025, from https://www.wolterskluwer.com/en/expert-insights/reduce-variability-of-care-factors-benefits-and-methods
Ruiz-Garcia, J. C., Tolosana, R., Vera-Rodriguez, R., & Moro, C. (2023). CareFall: Automatic Fall Detection through Wearable Devices and AI Methods (No. arXiv:2307.05275). arXiv. https://doi.org/10.48550/arXiv.2307.05275
Stanford, M. (2019a). Reducing Patient Falls and Decreasing Patient Safety Attendant Utilization With CareView Communication Technology. https://www.semanticscholar.org/paper/Reducing-Patient-Falls-and-Decreasing-Patient-With-Stanford/21f42519c17bdc43da956c5669888c4c5f0f0b52
Stanford, M. (2019b). Reducing Patient Falls and Decreasing Patient Safety Attendant Utilization With CareView Communication Technology. https://www.semanticscholar.org/paper/Reducing-Patient-Falls-and-Decreasing-Patient-With-Stanford/21f42519c17bdc43da956c5669888c4c5f0f0b52/figure/5
Thapa, R., Garikipati, A., Shokouhi, S., Hurtado, M., Barnes, G., Hoffman, J., Calvert, J., Katzmann, L., Mao, Q., & Das, R. (2022). Predicting Falls in Long-term Care Facilities: Machine Learning Study. JMIR Aging, 5(2), e35373. https://doi.org/10.2196/35373 DOI: https://doi.org/10.2196/35373
Transforming Healthcare Analytics: Five Critical Steps. (n.d.). Retrieved April 8, 2025, from https://www.healthcatalyst.com/learn/insights/transforming-healthcare-analytics-5-critical-steps
Turner, K., Staggs, V. S., Potter, C., Cramer, E., Shorr, R. I., & Mion, L. C. (2022a). Fall Prevention Practices and Implementation Strategies: Examining Consistency Across Hospital Units. Journal of Patient Safety, 18(1), e236–e242. https://doi.org/10.1097/PTS.0000000000000758
Turner, K., Staggs, V. S., Potter, C., Cramer, E., Shorr, R. I., & Mion, L. C. (2022b). Fall Prevention Practices and Implementation Strategies: Examining Consistency Across Hospital Units. Journal of Patient Safety, 18(1), e236–e242. https://doi.org/10.1097/PTS.0000000000000758
Turner, K., Staggs, V. S., Potter, C., Cramer, E., Shorr, R. I., & Mion, L. C. (2022c). Fall Prevention Practices and Implementation Strategies: Examining Consistency Across Hospital Units. Journal of Patient Safety, 18(1), e236–e242. https://doi.org/10.1097/PTS.0000000000000758 DOI: https://doi.org/10.1097/PTS.0000000000000758
Ueda, D., Kakinuma, T., Fujita, S., Kamagata, K., Fushimi, Y., Ito, R., Matsui, Y., Nozaki, T., Nakaura, T., Fujima, N., Tatsugami, F., Yanagawa, M., Hirata, K., Yamada, A., Tsuboyama, T., Kawamura, M., Fujioka, T., & Naganawa, S. (2024). Fairness of artificial intelligence in healthcare: Review and recommendations. Japanese Journal of Radiology, 42(1), 3–15. https://doi.org/10.1007/s11604-023-01474-3 DOI: https://doi.org/10.1007/s11604-023-01474-3
Using predictive analytics in health care | Deloitte Insights. (n.d.). Retrieved April 8, 2025, from https://www2.deloitte.com/us/en/insights/topics/analytics/predictive-analytics-health-care-value-risks.html
Wixley, H. (2022). Smart Application for Fall Detection Using Wearable ECG & Accelerometer Sensors. https://doi.org/10.48550/arXiv.2207.00008

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in our journal are licensed under CC-BY 4.0, which permits authors to retain copyright of their work. This license allows for unrestricted use, sharing, and reproduction of the articles, provided that proper credit is given to the original authors and the source.